Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078102    DOI: 10.1088/1674-1056/ab90eb
RAPID COMMUNICATION Prev   Next  

Construction of monolayer IrTe2 and the structural transition under low temperatures

Aiwei Wang(王爱伟)1,2, Ziyuan Liu(刘子媛)1,2, Jinbo Pan(潘金波)1,2, Qiaochu Li(李乔楚)1,2, Geng Li(李更)1,2,3, Qing Huan(郇庆)1, Shixuan Du(杜世萱)1,2,3,4, Hong-Jun Gao(高鸿钧)1,2,3,4
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Bulk iridium ditelluride (IrTe2) is a layered material and is known for its interesting electronic and structural properties, such as large spin-orbit coupling, charge ordering, and superconductivity. However, so far there is no experimental study about the fabrication of monolayer IrTe2. Here we report the formation of IrTe2 monolayer on Ir(111) substrate by direct tellurization method. Scanning tunneling microscope (STM) images show the coexistence of 1/5 phase and 1/6 phase structures of IrTe2 at room temperature. We also obtained STM images showing distorted stripe feature under low temperatures. This stripe feature is possibly induced by the strain between the IrTe2 monolayer and the metal substrate. Density functional theory (DFT) calculations show that the IrTe2 monolayer has strong interaction with the underlying Ir(111) substrate.
Keywords:  IrTe2      monolayer      phase transition      density functional theory  
Received:  08 April 2020      Revised:  19 April 2020      Accepted manuscript online: 
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Key Research & Development Project of China (Grant Nos. 2019YFA0308500, 2018YFA0305800, and 2016YFA0202300), the National Natural Science Foundation of China (Grant Nos. 51991340, 61888102, and 11888101), and the Chinese Academy of Sciences (Grant Nos. XDB28000000 and XDB30000000).
Corresponding Authors:  Geng Li     E-mail:  gengli.iop@iphy.ac

Cite this article: 

Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Construction of monolayer IrTe2 and the structural transition under low temperatures 2020 Chin. Phys. B 29 078102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Zhang G Y, Du S X, Wu K H and Gao H J 2018 Science 360 673
[3] Pan Y, Zhang L Z, Huang L, Li L F, Meng L, Gao M, Huan Q, Lin X, Wang Y L, Du S X, Freund H J and Gao H J 2014 Small 10 2215
[4] Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Nat. Rev. Mater. 1 16042
[5] Duong D L, Yun S J and Lee Y H 2017 ACS Nano 11 11803
[6] Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[7] Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater. 30 1804650
[8] Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X and Gao H J 2014 Adv. Mater. 26 4820
[9] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[10] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[11] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[12] Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225
[13] Fatemi V, Wu S F, Cao Y, Bretheau L, Gibson Q D, Watanabe K J, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362 926
[14] Wang Y, Xiao J, Zhu H Y, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S Q, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487
[15] Chen C, Kim J S, Yang Y F, Cao G X, Jin R Y and Plummer E W 2017 Phys. Rev. B 95 094118
[16] Ko K T, Lee H H, Kim D H, Yang J J, Cheong S W, Eom M J, Kim J S, Gammag R, Kim K S, Kim H S, Kim T H, Yeom H W, Koo T Y, Kim H D and Park J H 2015 Nat. Commun. 6 7342
[17] Pascut G L, Birol T, Gutmann M J, Yang J J, Cheong S W, Haule K and Kiryukhin V 2014 Phys. Rev. B 90 195122
[18] Oh Y S, Yang J J, Horibe Y and Cheong S W 2013 Phys. Rev. Lett. 110 127209
[19] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[20] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[21] Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I and Cheong S W 2012 Phys. Rev. Lett. 108 116402
[22] Pascut G L, Haule K, Gutmann M J, Barnett S A, Bombardi A, Artyukhin S, Birol T, Vanderbilt D, Yang J J, Cheong S W and Kiryukhin V 2014 Phys. Rev. Lett. 112 086402
[23] Kim H S, Kim S R, Kim K, Min B I, Cho Y H, Wang L H, Cheong S W and Yeom H W 2016 Nano Lett. 16 4260
[24] Wu R T, Yan L H, Zhang Y F, Ren J H, Bao D L, Zhang H G, Wang Y L, Du S X, Huan Q and Gao H J 2015 J. Phys. Chem. C 119 8208
[25] Kresse G 1996 Phys. Rev. B 54 11169
[26] Kresse G and Furthmiiller J 1996 Comput. Mater. Sci. 6 15
[27] Blochl P E 1994 Phys. Rev. B 50 17953
[28] Kresse G 1999 Phys. Rev. B 59 1758
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Machida T, Fujisawa Y, Igarashi K, Kaneko A, Ooi S, Mochiku T, Tachiki M, Komori K, Hirata K and Sakata H 2013 Phys. Rev. B 88 245125
[31] Hsu P J, Mauerer T, Vogt M, Yang J J, Oh Y S, Cheong S W, Bode M and Wu W D 2013 Phys. Rev. Lett. 111 266401
[32] Huang T, Zhao J, Peng M, Popov A A, Yang S F, Dunsch L and Petek H 2011 Nano Lett. 11 5327
[33] Lu H L, Cao Y, Qi J, Bakker A, Strassert C A, Lin X, Ernst K H, Du S X, Fuchs H and Gao H J 2018 Nano Lett. 18 4704
[34] Harikumar K R, Polanyi J C, Sloan P A, Ayissi S and Hofer W A 2006 J. Am. Chem. Soc. 128 16791
[35] Dai J X, Haule K, Yang J J, Oh Y S, Cheong S W and Wu W D 2014 Phys. Rev. B 90 235121
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[5] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[6] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[9] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[10] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[11] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[12] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[13] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[14] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[15] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
No Suggested Reading articles found!