Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 065202    DOI: 10.1088/1674-1056/ab829b
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma

M S Alam1, M R Talukder2
1 Department of Mathematics, Chittagong University of Engineering and Technology, Chittagong-4349, Bangladesh;
2 Plasma Science and Technology Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi-6205, Bangladesh
Abstract  Effects of oblique collisions of the dust acoustic (DA) waves in dusty plasma are studied by considering unmagnetized fully ionized plasma. The plasma consists of inertial warm negatively charged massive dusts, positively charged dusts, superthermal kappa distributed electrons, and isothermal ions. The extended Poincaré-Lighthill-Kuo (ePLK) method is employed for the drivation of two-sided Korteweg-de Vries (KdV) equations (KdVEs). The KdV soliton solutions are derived by using the hyperbolic secant method. The effects of superthermality index of electrons, temperature ratio of isothermal ion to electron, and the density ratio of isothermal ions to negatively charged massive dusts on nonlinear coefficients are investigated. The effects of oblique collision on amplitude, phase shift, and potential profile of right traveling solitons of DA waves are also studied. The study reveals that the new nonlinear wave structures are produced in the colliding region due to head-on collision of the two counter propagating DA waves. The nonlinearity is found to decrease with the increasing density ratio of ion to negative dust in the critical region. The phase shifts decrease (increase) with increasing the temperature ratio of ion to electron (κe). The hump (compressive, κe < κec) and dipshaped (rarefactive, κe > κec) solitons are produced depending on the angle (θ) of oblique collision between the two waves.
Keywords:  ion acoustic wave      dusty plasma      kappa distribution      ePLK method      hyperbolic secant method  
Received:  07 September 2019      Revised:  09 December 2019      Published:  05 June 2020
PACS:  52.27.Ny (Relativistic plasmas)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
Corresponding Authors:  M S Alam     E-mail:  alam21nov_2016@yahoo.com

Cite this article: 

M S Alam, M R Talukder Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma 2020 Chin. Phys. B 29 065202

[1] Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: IOP Publishing)
[2] Verheest F 2000 Waves in Dusty Plasmas (Dordrecht: Kluwer Academic)
[3] Shukla P K 2001 Phys. Plasmas 8 1791
[4] Mendis D A and Rosenberg M 1994 Ann. Rev. Astron. Astrophys. 32 419
[5] Saberiana E, Esfandyari-Kalejahib A and Afsari-Ghazib M 2017 Plasma Phys. Rep. 43 83
[6] Dubinov A E 2009 Plasma Phys. Rep. 35 991
[7] Gill T S, Bains A S and Bedi C 2010 Phys. Plasmas 17 013701
[8] Tasnim I, Masud M M, Asaduzzaman M and Mamun A A 2013 Chaos 23 013147
[9] Rao N N, Shukla P K and Yu M Y 1990 Planet. Space Sci. 38 546
[10] Rao N N and Shukla P K 1994 Space Sci. 42 221
[11] Melands? F and Shukla P K 1995 Space Sci. 43 635
[12] Mamun A A, Shukla P K and Cairns R A 1996 Phys. Plasmas 3 702
[13] Mamun A A, Shukla P K and Cairns R A 1996 Phys. Plasmas 3 2610
[14] Mamun A A 1999 Astrophys. Space Sci. 268 443
[15] Shukla P K and Mamun A A 2003 New J. Phys. 5 17
[16] Mamun A A, Eliasson B and Shukla P K 2004 Phys. Lett. A 332 412
[17] Chow V W, Mendis D A and Rosenberg M 1993 J. Geophys. Res. 98 19065
[18] Chow V W, Mendis D A and Rosenberg M 1994 IEEE Trans. Plasma Sci. 22 179
[19] Mamun A A and Shukla P K 2002 Geophys. Res. Lett. 29 1870
[20] Fortov V E, Nefedov A P, Vaulina O S, Lipaev A M, Molotkov V I, Samaryan A A, Nikitskii V P, Ivanov A I, Savin S F, Kalmykov A V, Solovev A Y and Vinogradov P V 1998 J. Exp. Theor. Phys. 87 1087
[21] Pierrard V and Lemaire J 1996 J. Geophys. Res.: Space Phys. 101 7923
[22] Christon S P, Mitchell D G, Williams D J, Frank L A, Huang C Y and Eastman T E 1988 J. Geophys. Res.: Space Phys. 93 2562
[23] Maksimovic M, Pierrard V and Lemaire J F 1997 Astron. Astrophys. 324 725
[24] Pierrard V, Lamy H and Lemaire J 2004 J. Geophys. Res. 109 A02118
[25] Montgomery M D, Bame S J and Hundhause A J 1968 J. Geophys. Res. 73 4999
[26] Feldman W C, Asbridge J R, Bame S J, Montgomery M D and Gary S P 1975 J. Geophys. Res. 80 4181
[27] Pilipp W G, Miggenrieder H, Montgomery M D, Muhlhauser K H, Rosenbauer H and Schwenn R 1987 J. Geophys. Res. 92 1075
[28] Maksimovic M, Pierrard V and Riley P 1997 Geophys. Res. Lett. 24 1151
[29] Zouganelis I 2008 J. Geophys. Res. 113 A08111
[30] Magni S, Roman H E, Barni R, Riccardi C, Pierre Th and Guyomarc H D 2005 Phys. Rev. E 72 026403
[31] Vasyliunas V M 1968 J. Geophys. Res. 73 2839
[32] Hellberg M A, Mace R L, Armstrong R J and Karlstad G 2000 J. Plasmas Phys. 64 433
[33] Hasegawa A, Mima K and Duong-Van M 1985 Phys. Rev. Lett. 54 2608
[34] Baluku T K, Hellberg M A, Kourakis I and Saini N S 2010 Phys. Plasmas 17 053702
[35] Lee M J 2010 Curr. Appl. Phys. 10 1340
[36] Runmoni G, Roychoudhury R and Khan M 2011 Indian J. Pure Appl. Phys. 49 173
[37] Alinejad H 2012 Astrophys. Space Sci. 339 249
[38] Ghosh S, Sarkar S, Khan M and Gupta M R 2000 Phys. Plasmas 7 3594
[39] Alinejad H and Mamun A A 2011 Phys. Plasmas 18 112103
[40] Gourui M K, Chatterjee P and Wong C S 2013 Astrophys. Space Sci. 343 639
[41] Su C H and Mirie R M 1980 J. Fluid Mech. 98 509
[42] Jeffery A and Kawahawa T 1982 Asymptotic Methods in Nonlinear Wave Theory (London: Pitman)
[43] Huang G and Velarde M G 1996 Phys. Rev. E 53 2988
[44] Xue J K 2004 Phys. Rev. E 69 016403
[45] Li S C, Wu L H, Lin M M and Duan W S 2007 Chin. Phys. Lett. 24 2312
[46] Han J N, Du S L and Duan W S 2008 Phys. Plasmas 15 112104
[47] Chopra K N 2014 Chin. J. Phys. 52
[48] Boruah A, Sharma S K, Bailug H and Nakamura Y 2015 Phys. Plasmas 22 093706
[49] Das S 2019 J. Phys.: Conf. Series 1290 012025
[50] Zahed H, Sayyar M R, Petehe S J and Sobahanian S 2018 Int. J. Opt. Photon. 12
[51] Ferdousi M, Sultana S and Mamun A A 2015 Phys. Plasmas 22 032117
[52] Paul S, Denra R and Sarkar S 2019 AIP Conf. Proc. 2072 020014
[53] Chowdhury N A, Mannan A and Mamun A A 2017 Phys. Plasmas 24 113701
[54] El-Shamy E F, Tribeche M and El-Taibany W F 2014 Cent. Eur. J. Phys. 12 805
[55] Alam M S, Hafez M G, Talukder M R and Hossain A M 2018 Phys. Plasmas 25 072904
[56] Chatterjee P and Ghosh U N 2011 Euro. Phys. J. D 64 413
[1] Directional motion of dust particles at different gear structuresin a plasma
Chao-Xing Dai(戴超星), Chao Song(宋超), Zhi-Xiang Zhou(周志向), Wen-Tao Sun(孙文涛), Zhi-Qiang Guo(郭志强), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2020, 29(2): 025203.
[2] Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations
Aamir Shahzad, Maogang He, Sheeba Ghani, Muhammad Kashif, Tariq Munir, Fang Yang. Chin. Phys. B, 2019, 28(5): 055201.
[3] The inverse Bremsstrahlung absorption in the presence of Maxwellian and non-Maxwellian electrons
Mehdi Sharifian, Fatemeh Ghoveisi, Leila Gholamzadeh, Narges Firouzi Farrashbandi. Chin. Phys. B, 2019, 28(10): 105202.
[4] Small amplitude double layers in an electronegative dusty plasma with q-distributed electrons
Zhong-Zheng Li(李中正), Juan-Fang Han(韩娟芳), Dong-Ning Gao(郜东宁), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(10): 105204.
[5] On the dielectric response function and dispersion relation in strongly coupled magnetized dusty plasmas
M Shahmansouri, N Khodabakhshi. Chin. Phys. B, 2018, 27(10): 105206.
[6] Rotation of a single vortex in dusty plasma
Jia Yan(闫佳), Fan Feng(冯帆), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2017, 26(9): 095202.
[7] Mode transition in dusty micro-plasma driven by pulsed radio-frequency source in C2H2/Ar mixture
Xiang-Mei Liu(刘相梅), Rui Li(李瑞), Ya-Hui Zheng(郑亚辉). Chin. Phys. B, 2017, 26(4): 045202.
[8] Relativistic degenerate effects of electrons and positrons on modulational instability of quantum ion acoustic waves in dense plasmas with two polarity ions
Liu Tie-Lu, Wang Yun-Liang, Lu Yan-Zhen. Chin. Phys. B, 2015, 24(2): 025202.
[9] Analysis of electron energy distribution function in a magnetically filtered complex plasma
M K Deka, H Bailung, N C Adhikary. Chin. Phys. B, 2013, 22(4): 045201.
[10] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
[11] Effect of multicomponent dust grains in a cold quantum dusty plasma
Yang Xiu-Feng,Wang Shan-Jin,Chen Jian-Min,Shi Yu-Ren,Lin Mai-Mai,Duan Wen-Shan. Chin. Phys. B, 2012, 21(5): 055202.
[12] Impurity-induced local modes in one-dimensional dusty plasma chains
Ren Yong-Chao, Wang Xin-Shang, Wang Xiao-Gang. Chin. Phys. B, 2012, 21(11): 115201.
[13] Effects of dust size distribution in ultracold quantum dusty plasmas
Qi Xue-Hong, Duan Wen-Shan, Chen Jian-Min, Wang Shan-Jin. Chin. Phys. B, 2011, 20(2): 025203.
[14] Linear and nonlinear excitations in complex plasmas with nonadiabatic dust charge fluctuation and dust size distribution
Zhang Li-Ping, Xue Ju-Kui, Li Yan-Long. Chin. Phys. B, 2011, 20(11): 115201.
[15] Nonlinear acoustic waves in a collisional self-gravitating dusty plasma
Guo Zhi-Rong, Yang Zeng-Qiang, Yin Bao-Xiang, Sun Mao-Zhu. Chin. Phys. B, 2010, 19(11): 115203.
No Suggested Reading articles found!