Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064207    DOI: 10.1088/1674-1056/ab836f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell

Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才)
Department of Physics, Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
Abstract  Inhibiting the radiative radiation is an efficient approach to enhance quantum yields in a solar sell. This work carries out the inhibition of radiative recombination rate (RRR) in a quantum photocell with two coupled donors. We perform explicit calculations of the transition rates, energy gaps and the absorbed solar wavelength-dependent RRR, and find that two different regimes play the crucial roles in inhibiting RRR. One is the quantum coherence generated from two different transition channels, the other includes the absorbed photon wavelength and gaps between the donor and acceptor in this proposed photocell model. The results imply that there may be some efficient ways to enhance the photoelectron conversion compared to the classic solar cell.
Keywords:  radiation recombination rate      photoelectric conversion efficiency      quantum photocell  
Received:  29 December 2019      Revised:  24 February 2020      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61565008 and 61205205) and the General Program of Yunnan Applied Basic Research Project, China (Grant No. 2016FB009).
Corresponding Authors:  Shun-Cai Zhao     E-mail:  zhaosc@kust.edu.cn

Cite this article: 

Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才) Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell 2020 Chin. Phys. B 29 064207

[1] Würfel P 2016 Physics of solar cells: from basic principles to advanced concepts 3rd edn (Birlin: Wiley-VCH)
[2] Huang H B, Tian G Y, Zhou L, Yuan J R, Fahrner W R, Zhang W B, Li X B, Chen W H and Liu R Z 2018 Chin. Phys. B 27 038502
[3] Du H J, Wang W C and Gu Y F 2017 Chin. Phys. B 26 028803
[4] Chen W B, Xu Z X, Li K, Chui S S Y, Roy V A L, Lai P T and Che C M 2012 Chin. Phys. B 21 078401
[5] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[6] Henry C H and Henry C H 1980 J. Appl. Phys. 51 4494
[7] Li J M, Chong M, Zhu J C, Li Y J, Xu J D, Wang P D, Shang Z Q, Yang Z K, Zhu R H and Cao X L 1992 Appl. Phys. Lett. 60 2240
[8] Bruns J, Seifert W, Wawer P, Winnicke H, Braunig D and Wagemann H G 1994 Appl. Phys. Lett. 64 2700
[9] Luque A and Mart A 1997 Phys. Rev. Lett. 78 5014
[10] Kasai H and Matsumura H 1997 Sol. Energy Mater. Sol. Cells 48 93
[11] Han L Y, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A and Yamanaka R 2005 Appl. Phys. Lett. 86 213501
[12] Engel G S, Calhoun T R, Read E L, Tae-Kyu A, Tomäs M, Cheng Y C, Blankenship R E and Fleming G R 2007 Nature 446 782
[13] Mukti R J, Hossain M R, Islam A, Mekhilef S and Horan B 2019 Energies 12 2602
[14] Guo P F, Ye Q, Yang X K, Zhang J and Wang H Q 2019 J. Mater. Chem. A 7 2497
[15] Scully M O 2010 Phys. Rev. Lett. 104 207701
[16] Scully M O, Chapin K R, Dorfman K E, Moochan B K and Anatoly S 2011 Proc. Natl. Acad. Sci. USA 108 15097
[17] Svidzinsky A A, Dorfman K E and Scully M O 2011 Phys. Rev. A 84 053818
[18] Kühn O and Lochbrunner S 2011 Semiconductors and Semimetals 85 47
[19] Killoran N, Huelga S F and Plenio M B 2015 J. Chem. Phys. 143 155102
[20] Yao Y 2015 Phys. Rev. B 91 045421
[21] Zhang Y T, Sangchul O, Alharbi F H, Engel G S and Sabre K 2015 Phys. Chem. Chem. Phys. 17 5743
[22] Sangchul O 2017 arXiv:1709.08337
[23] Daryani M, Rostami A, Darvish G and Farshi M K M 2017 Opt. Quantum Electron. 49 255
[24] Zhao S C and Chen J Y 2019 New J. Phys. 21 103015
[25] Zhao S C and Wu Q X 2020 Superlattices Microstruct. 137 106329
[26] Handy R J 1967 Solid State Electron. 10 765
[27] Saǧlam M, Ayyildiz E, Gümüs A, Türüt A, Efeoǧlu H and Tüzemen S 1996 Appl. Phys. A 62 269
[28] Kar G S, Maikap S, Banerjee S K and Ray S K 2002 Semicond. Sci. Technol. 17 938
[29] Kajiyama Y, Joseph K, Kajiyama K, Kudo S and Aziz H 2012 Sid Symp. Dig. Tech. Papers 43 1544
[30] Luque A, Mellor A, Ramiro I, Antoln E, Tobas I and Mart A 2013 Sol. Energy Mater. Sol. Cells 115 138
[31] Tian L and Dagenais M 2015 Appl. Phys. Lett. 106 171101
[32] Kum H, Dai Y S, Aihara T, Slocum M A, Tayagaki T, Fedorenko A, Polly S J, Bittner Z, Sugaya T and Hubbard S M 2018 Appl. Phys. Lett. 113 043902
[33] Richards B S 2006 Sol. Energy Mater. Sol. Cells 90 2329
[34] Conibeer G, Patterson R, Huang L M, Guillemoles J F, Konig D, Shrestha S and Green M A 2010 Sol. Energy Mater. Sol. Cells 94 1516
[35] Hirst L, Führer M, Farrell D J et al. 2011 37th IEEE Photovoltaic Specialists Conference (Seattle, WA) p. 003302
[36] Conibeer G, Shrestha S, Huang S J, Patterson R, Aliberti P, Xia H, Feng Y, Gupta N, Smyth S and Liao Y 2012 38th IEEE Photovoltaic Specialists Conference (Austin, TX) p. 000032
[37] Graziani F R 2004 J. Quant. Spectrosc. Radiat. Transfer 83 711
[38] Yi Y, Massuda A, Roques-Carmes C, Kooi S E, Christensen T, Johnson S G, Joannopoulos J D, Miller O D, Kaminer I and Soljai M 2018 Nat. Phys. 14 67
[39] Würfel P 2007 CHIMIA Int. J. Chem. 61 770
[40] Creatore C, Parker M A, Emmott S and Chin A W 2013 Phys. Rev. Lett. 111 253601
[41] Abramavicius D, Benoit P and Shaul M 2009 Chem. Phys. 357 79
[42] Dorfman K E, Voronine D V, Shaul M and Scully M O 2013 Proc. Natl. Acad. Sci. USA 110 2746
[43] Dorfman K E, Svidzinsky A A and Scully M O 2013 Coherent Opt. Phenom. 1 42
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[7] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[8] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[9] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[10] High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules
Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜). Chin. Phys. B, 2022, 31(1): 014202.
[11] Actively tunable dual-broadband graphene-based terahertz metamaterial absorber
Dan Hu(胡丹), Tian-Hua Meng(孟田华), Hong-Yan Wang(王红燕), and Mai-Xia Fu(付麦霞). Chin. Phys. B, 2021, 30(12): 126101.
[12] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[13] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[14] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[15] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
No Suggested Reading articles found!