Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067302    DOI: 10.1088/1674-1056/ab8378
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Zero-energy modes in serially coupled double quantum dots

Fu-Li Sun(孙复莉)1, Zhen-Hua Li(李振华)2, Jian-Hua Wei(魏建华)1
1 Department of Physics & Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 School of Physical Science and Technology&Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  We investigate symmetrically coupled double quantum dots via the hierarchical equations of motion method and propose a novel zero-energy mode (ZEM) at a temperature above the spin singlet-triplet transition temperature. Owing to the resonance of electron quasi-particle and hole quasi-particle, ZEM has a peak at ω=0 in the spectral density function. We further examine the effect of the magnetic field on the ZEM, where an entanglement of spin and charge has been determined; therefore, the magnetic field can split the ZEM in the spectra.
Keywords:  zero-energy mode      quantum dot      temperature  
Received:  23 February 2020      Revised:  23 March 2020      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  73.63.Kv (Quantum dots)  
  74.62.-c (Transition temperature variations, phase diagrams)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774418 and 11374363).
Corresponding Authors:  Jian-Hua Wei     E-mail:  wjh@ruc.edu.cn

Cite this article: 

Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华) Zero-energy modes in serially coupled double quantum dots 2020 Chin. Phys. B 29 067302

[1] Kayyalha M, Xiao D, Zhang R X, Shin J, Jiang J, Wang F, Zhao Y F, Xiao R, Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q, Molenkamp L W, Chan M H W, Samarth N and Chang C Z 2020 Science 367 64
[2] He Q L, Pan L, Stern A L, Burks E C, Che X Y, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X F, Chen Z J, Nie T X, Shao Q M, Fan Y B, Zhang S C, Liu K, Xia J and Wang K L 2017 Science 357 294
[3] Majorana E 2008 Il Nuovo Cimento (1924-1942) 14 171
[4] Wilczek F 2009 Nature Physics 5 614
[5] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[6] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[7] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[8] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[9] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nature Physics 8 887
[10] Elliott S R and Franz M 2015 Rev. Mod. Phys. 87 137
[11] Sarma S D, Freedman M and Nayak C 2015 npj Quantum Information 1 15001
[12] O'Brien T E, Rożek P and Akhmerov A R 2018 Phys. Rev. Lett. 120 220504
[13] Fan X, Huang W J, Ma T X and Wang L G 2016 Phys. Rev. B 93 165137
[14] Alhassid Y 2000 Rev. Mod. Phys. 72 895
[15] Aleiner I L, Brouwer P W and Glazman L I 2002 Phys. Rep. 358 309
[16] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[17] Reimann M and Manninen M 2002 Rev. Mod. Phys. 74 1283
[18] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961
[19] Jin J S, Zheng X and Yan Y J 2008 J. Chem. Phys. 128 234703
[20] Härtle R, Cohen G, Reichman D R and Millis A J 2013 Phys. Rev. B 88 235426
[21] Härtle R and Millis A J 2014 Phys. Rev. B 90 245426
[22] Härtle R, Cohen G, Reichman D R and Millis A J 2015 Phys. Rev. B 92 085430
[23] Schinabeck C, Erpenbeck A, Härtle R and Thoss M 2016 Phys. Rev. B 94 201407
[24] Schinabeck C, Härtle R and Thoss M 2018 Phys. Rev. B 97 235429
[25] Wei J H and Yan Y J 2011 arXiv:1108.5955
[26] Li Z H, Tong N H, Zheng X, Hou D, Wei J H, Hu J and Yan Y J 2012 Phys. Rev. Lett. 109 266403
[27] Yan Y J 2014 J. Chem. Phys. 140 054105
[28] Yan Y J, Jin J S, Xu R X and Zheng X 2016 Frontiers Phys. 11 110306
[29] Zheng X, Jin J S, Welack S, Luo M and Yan Y J 2009 J. Chem. Phys. 130 164708
[30] Zheng X, Yan Y J and Di Ventra M 2013 Phys. Rev. Lett. 111 086601
[31] Hu J, Xu R X and Yan Y J 2010 J. Chem. Phys. 133 101106
[32] Hu J, Luo M, Jiang F, Xu R X and Yan Y J 2011 J. Chem. Phys. 134 244106
[33] Kondo J 1968 Phys. Rev. 169 437
[34] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press) pp. 47-65
[35] López R, Aguado R and Platero G 2002 Phys. Rev. Lett. 89 136802
[36] Maune B M, Borselli M G, Huang B, Ladd T D, Deelman P W, Holabird K S, Kiselev A A, Alvarado-Rodriguez I, Ross R S, Schmitz A E, Sokolich M, Watson C A, Gyure M F and Hunter A T 2012 Nature 481 344
[37] Li Z H, Cheng Y X, Wei J H, Zheng X and Yan Y J 2018 Phys. Rev. B 98 115133
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[7] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[8] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[9] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[10] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[11] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[12] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[13] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[14] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[15] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
No Suggested Reading articles found!