Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054702    DOI: 10.1088/1674-1056/ab7b4b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Droplets breakup via a splitting microchannel

Wei Gao(高崴)1, Cheng Yu(于程)2, Feng Yao(姚峰)3
1 School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA;
2 Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
3 Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Abstract  On the basis of a volume of fluid (VOF) liquid/liquid interface tracking method, we apply a two-dimensional model to investigate the dynamic behaviors of droplet breakup through a splitting microchannel. The feasibility and applicability of the theoretical model are experimentally validated. Four flow regimes are observed in the splitting microchannel, that is, breakup with permanent obstruction, breakup with temporary obstruction, breakup with tunnels, and non-breakup. The results indicate that the increase of the capillary number Ca provides considerable upstream pressure to accelerate the droplet deformation, which is favorable for the droplet breakup. The decrease of the droplet size contributes to its shape changing from the plug to the sphere, which results in weakening droplet deformation ability and generating the non-breakup flow regime.
Keywords:  microfluidics      droplet splitting      hydrodynamic      numerical simulation  
Received:  24 September 2019      Revised:  27 December 2019      Accepted manuscript online: 
PACS:  47.55.dr (Interactions with surfaces)  
  82.70.Kj (Emulsions and suspensions)  
  47.55.db (Drop and bubble formation)  
  68.05.-n (Liquid-liquid interfaces)  
Corresponding Authors:  Cheng Yu     E-mail:  chengy8@hawaii.edu

Cite this article: 

Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰) Droplets breakup via a splitting microchannel 2020 Chin. Phys. B 29 054702

[1] Zhang C, Shen C and Chen Y 2017 Int. J. Heat Mass Transfer 104 1135
[2] Vladisavljevic G T, Khalid N, Neves M A, Kuroiwa T, Nakajima M, Uemura K, Ichikawa S and Kobayashi I 2013 Adv. Drug Deliv Rev. 65 1626
[3] Li J, Liu H, Ioannou N, Zhang Y and Reese J M 2015 Commun. Comput. Phys. 17 1113
[4] Shang L, Cheng Y and Zhao Y 2017 Chem. Rev. 117 7964
[5] Li Y, Jain M, Ma Y and Nandakumar K 2015 Soft Matter 11 3884
[6] Fu F, Chen Z, Zhao Z, Wang H, Shang L, Gu Z and Zhao Y 2017 Proc. Natl Acad. Sci. USA 114 5900
[7] Lan K, Liu J, Li Z, et al. 2016 Matter Radiat. Extremes 1 8
[8] Zhang C, Yu F, Li X and Chen Y 2019 AlChE J. 65 1119
[9] Campbell E M, Goncharov V N, Sangster T C, et al. 2017 Matter Radiat. Extremes 2 37
[10] Lee T Y, Choi T M, Shim T S, Frijns R A and Kim S H 2016 Lab Chip 16 3415
[11] Liang W G, Yang C, Wen G Q, Wang W, Ju X J, Xie R and Chu L Y 2014 Appl. Therm. Eng. 70 817
[12] Chen Y, Zhang C, Shi M and Yang Y 2009 AlChE J. 56 2018
[13] Wang N, Liu H and Zhang C 2017 J. Rheol. 61 741
[14] Ofner A, Mattich I, Hagander M, Dutto A, Seybold H, Rühs P A and Studart A R 2019 Adv. Funct. Mater. 29 1806821
[15] Nisisako T, Ando T and Hatsuzawa T 2012 Lab Chip 12 3426
[16] Hoang D A, Haringa C, Portela L M, Kreutzer M T, Kleijn C R and van Steijn V 2014 Chem. Eng. J. 236 545
[17] Chen Y, Liu X and Shi M 2013 Appl. Phys. Lett. 102 051609
[18] Zhang C, Deng Z and Chen Y 2014 Int. J. Heat Mass Transfer 70 322
[19] Liu H, Ba Y, Wu L, Li Z, Xi G and Zhang Y 2018 J. Fluid Mech. 837 381
[20] Fu T, Ma Y and Li H Z 2014 AlChE J. 60 1920
[21] Carlson A, Do-Quang M and Amberg G 2010 Int. J. Multiphase Flow 36 397
[22] Liu H, Ju Y, Wang N, Xi G and Zhang Y 2015 Phys. Rev. E 92 033306
[23] Lee J, Lee W and Son G 2013 J. Mech. Sci. Technol. 27 1693
[24] Liu H and Zhang Y 2009 J. Appl. Phys. 106 034906
[25] Chen Y and Deng Z 2017 J. Fluid Mech. 819 401
[26] Link D R, Anna S L, Weitz D A and Stone H A 2004 Phys. Rev. Lett. 92 054503
[27] Abate A R and Weitz D A 2011 Lab Chip 11 1911
[28] Chen Y, Gao W, Zhang C and Zhao Y 2016 Lab Chip 16 1332
[29] Hirt C W and Nichols B D 1981 J. Comput. Phys. 39 201
[30] Cristini V and Tan Y C 2004 Lab Chip 4 257
[31] Brackbill J U, Kothe D B and Zemach C 1992 J. Comput. Phys. 100 335
[32] Afkhami S, Zaleski S and Bussmann M 2009 J. Comput. Phys. 228 5370
[33] Renardy M, Renardy Y and Li J 2001 J. Comput. Phys. 171 243
[34] Leshansky A M and Pismen L M 2009 Phys. Fluids 21 023303
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[4] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[5] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[6] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[7] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[8] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[9] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[10] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[11] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[12] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[13] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[14] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[15] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
No Suggested Reading articles found!