Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047801    DOI: 10.1088/1674-1056/ab75cd
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives

Ji Zhou(周吉)1, Shi-Kui Dong(董士奎)2, Zhi-Hong He(贺志宏)2, Yan-Hu Zhang(张彦虎)3
1 Beijing Institute of Space Mechanics&Electricity, Beijing 100094, China;
2 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
3 Advanced Manufacturing&Equipment Institute, Jiangsu University, Zhenjiang 212013, China
Abstract  Ionic liquids have received wide attention due to their novel optoelectronic structures and devices as an optical means of regulating electricity. However, the quantitative testing and analysis of refractive index of ionic liquids under electric field are rarely carried out. In the present study, an experimental apparatus including a hollow prism is designed to measure the refractive indices of ionic liquids under different electric fields. Five groups of imidazole ionic liquids are experimentally investigated and an inversion is performed to determine the refractive indices under electric fields. The error propagation analysis of the apex angle and the minimum deflection angle are conducted, and the machining accuracy requirements of the hollow prism are determined. The results show that the refractive indices of imidazole ionic liquids change with the light wavelength, following a downward convex parabola. Furthermore, the refractive index decreases with the carbon chain length of ionic liquid at a given wavelength, presenting an order of C3MImI > C4MImI > C5MImI > C3MImBr > C3MImBF4. Notably, the refractive index of imidazole ionic liquid exhibits a nonlinear change with the applied voltage at 546 nm and a monotonical decrease at 1529 nm. Besides, the variation of refractive index at 1529 nm with the applied voltage is larger than that at 546 nm and 1013 nm. Importantly, the variation of refractive index is contrary to that of absorption coefficient under electric field. This study illustrates that the theory of electrode and carrier transport can be used to explain the law of variation of n-k value of ionic liquid under the electric field, and provides the support for the evaluation of physical properties of ionic liquids, the measurement of optical functional parameters and the regulation of electric-optic performances of optical devices.
Keywords:  ionic liquid      refractive index      electro-optical property      uncertainty propagation analysis  
Received:  10 November 2019      Revised:  08 February 2020      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.30.cd (Solutions and ionic liquids)  
  78.20.Jq (Electro-optical effects)  
  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51576054 and 51705210) and the Jiangsu Provincial Planned Projects for Postdoctoral Research Funds, China (Grant No. 2019K195).
Corresponding Authors:  Yan-Hu Zhang     E-mail:  zhyh@ujs.edu.cn

Cite this article: 

Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎) Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives 2020 Chin. Phys. B 29 047801

[1] Nair J R, Coló F, Kazzazi A, Moreno M, Bresser D, Lin R, Bella F, Meligrana G, Fantini S, Simonetti E, Appetecchi G B, Passerini S and Gerbaldi C 2019 J. Power Sources 412 398
[2] Hagiwara R and Ito Y 2000 J. Fluor. Chem. 105 221
[3] Marsh K N, Boxall J A and Lichtenthaler R 2004 Fluid Phase Equilib. 219 93
[4] Leighton C 2019 Nat. Mater. 18 13
[5] Fan F R, Wu H, Nabok D, Hu S, Ren W, Draxl C and Stroppa A 2017 J. Am. Chem. Soc. 139 12883
[6] Zhang C, Zhao W, Bi S, Rouleau C M, Fowlkes J D, Boldman W L, Gu G, Li Q, Feng G and Rack P D 2019 ACS Appl. Mater. Interfaces 11 17979
[7] Dedzo G K and Detellier C 2018 Adv. Funct. Mater. 28 1703845
[8] Lee K, Kim Y, Jung J, Ihee H and Park Y 2018 Sci. Rep. 8 3064
[9] Xu F, Das S, Gong Y, Liu Q, Chien H C, Chiu H Y, Wu J and Hui R 2015 Appl. Phys. Lett. 106 031109
[10] Wang F, Itkis M E, Bekyarova E and Haddon R C 2013 Nat. Photon. 7 459
[11] Zhou J, Dong S K, He Z H, Caesar Puoza J L and Zhang Y H 2019 Chin. Phys. B 28 017801
[12] Hayyan A, Mjalli F S, AlNashef I M, Al-Wahaibi Y M, Al-Wahaibi T and Hashim M A 2013 J. Mol. Liq. 178 137
[13] Rilo E, Domínguez-Pérez M, Vila J, Segade L, García M, Varela L M and Cabeza O 2012 J. Chem. Thermodyn. 47 219
[14] Wang X, Lu X, Zhou Q, Zhao Y, Li X and Zhang S 2017 Phys. Chem. Chem. Phys. 19 19967
[15] Kang X, Zhao Y and Li J 2018 J. Mol. Liq. 250 44
[16] Soriano A N, Ornedo-Ramos K F P, Muriel C A M, Adornado A P, Bungay V C and Li M H 2016 J. Taiwan Inst. Chem. Eng. 65 83
[17] Chaudhary N and Nain A K 2018 J. Mol. Liq. 271 501
[18] Zhang Q, Cai S, Zhang W, Lan Y and Zhang X 2017 J. Mol. Liq. 233 471
[19] de Pablo L, Segovia Puras J J, Martín C and Bermejo M D 2018 J. Chem. Eng. Data 63 1053
[20] Bhattacharjee A, Lopes-da-Silva J A, Freire M G, Coutinho J A P and Carvalho P J 2015 Fluid Phase Equilib. 400 103
[21] Bhattacharjee A, Luís A, Santos J H, Lopes-da-Silva J A, Freire M G, Carvalho P J and Coutinho J A P 2014 Fluid Phase Equilib. 381 36
[22] Seki S, Serizawa N, Ono S, Takei K, Hayamizu K, Tsuzuki S and Umebayashi Y 2019 J. Chem. Eng. Data 64 433
[23] Zheng X, Gong Y, Jiang W, Yu K, Tong J and Yang J 2019 J. Mol. Liq. 288 111004
[24] Shi R and Wang Y 2013 J. Phys. Chem. B 117 5102
[25] Bai L, Li S N, Zhai Q G, Jiang Y C and Hu M C 2015 Chem. Pap. 69 1378
[26] Montalbán M G, Bolívar C L, Díaz Baños F G and Víllora G 2015 J. Chem. Eng. Data 60 1986
[27] Lide D R 1992 Appl. Phys. B-Lasers Opt. 54 113
[28] Paskov P P and Pavlov L I J A P B 1992 Appl. Phys. B-Lasers Opt. 54 113
[29] Stagg B J and Charalampopoulos T T 1993 Combust. Flame 94 381
[30] Peiponen K E and Vartiainen E M Phys. Rev. B 44 8301
[31] Burba C M, Janzen J, Butson E D and Coltrain G L 2013 J. Phys. Chem. B 117 8814
[32] Chiappe C, Margari P, Mezzetta A, Pomelli C S, Koutsoumpos S, Papamichael M, Giannios P and Moutzouris K 2017 Phys. Chem. Chem. Phys. 19 8201
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[4] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
[5] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[6] Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment
Jiaji Yang(杨家霁), Xuejing Li(李雪晶), Yanhua Jia(贾艳华), Jiang Zhang(张弜), and Qinglin Jiang(蒋庆林). Chin. Phys. B, 2022, 31(2): 027302.
[7] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[8] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
[9] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[10] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[11] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[12] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[13] Ionic liquid gating control of planar Hall effect in Ni80Fe20/HfO2 heterostructures
Yang-Ping Wang(汪样平), Fu-Fu Liu(刘福福), Cai Zhou(周偲), Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(7): 077507.
[14] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[15] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
No Suggested Reading articles found!