Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 046102    DOI: 10.1088/1674-1056/ab75cf
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Irradiation hardening behaviors of tungsten-potassium alloy studied by accelerated 3-MeV W2+ ions

Xiao-Liang Yang(杨晓亮)1,2, Long-Qing Chen(陈龙庆)1, Wen-Bin Qiu(邱文彬)1, Yang-Yi-Peng Song(宋阳一鹏)1, Yi Tang(唐毅)1, Xu-Dong Cui(崔旭东)2, Chang-Song Liu(刘长松)3, Yan Jiang(蒋燕)3, Tao Zhang(张涛)3, Jun Tang(唐军)1
1 Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2 Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China;
3 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Tungsten-potassium (WK) alloy with ultrafine/fine grains and nano-K bubbles is fabricated through spark plasma sintering (SPS) and rolling process. In this study, 3-MeV W2+ ion irradiation with a tandem accelerator is adopted to simulate the displacement damage caused by neutrons. As the depth of irradiation damage layer is limited to only 500 nm, the hardening behaviors of WK alloy and ITER (International Thermonuclear Experimental Reactor)-W under several damage levels are investigated through Bercovich tip nanoindentation test and other morphological characterizations. The indenter size effect (ISE), soft substrate effect (SSE), and damage gradient effect (DGE) are found to influence the measurement of nano-hardness. Few or no pop-ins in irradiated samples are observed while visible pop-in events take place in unirradiated metals. Extensive pile-up with different morphology features around the indentation exists in both WK and ITER-W. The WK shows a smaller hardness increment than ITER-W under the same condition of displacement damage. This study provides beneficial information for WK alloy serving as a promising plasma facing materials (PFMs) candidate.
Keywords:  irradiation harden      spark plasma sintering      WK alloy      nanoindentation  
Received:  30 November 2019      Revised:  18 January 2020      Accepted manuscript online: 
PACS:  61.80.Jh (Ion radiation effects)  
  52.55.Rk (Power exhaust; divertors)  
  28.52.Fa (Materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975160, 11775149, and 11475118) and the International Thermonuclear Experimental Reactor (ITER) Program Special, China (Grant No. 2011GB108005).
Corresponding Authors:  Xu-Dong Cui, Jun Tang     E-mail:  xudcui@caep.cn;tangjun@scu.edu.cn

Cite this article: 

Xiao-Liang Yang(杨晓亮), Long-Qing Chen(陈龙庆), Wen-Bin Qiu(邱文彬), Yang-Yi-Peng Song(宋阳一鹏), Yi Tang(唐毅), Xu-Dong Cui(崔旭东), Chang-Song Liu(刘长松), Yan Jiang(蒋燕), Tao Zhang(张涛), Jun Tang(唐军) Irradiation hardening behaviors of tungsten-potassium alloy studied by accelerated 3-MeV W2+ ions 2020 Chin. Phys. B 29 046102

[1] J H 2007 Fusion reactor materials (Beijing: Chemical Industry Press) p. 25
[2] Knaster J, Moeslang A and Muroga T 2016 Nat. Phys. 12 424
[3] Ueda Y, Coenen J W, De Temmerman G, Doerner R P, Linke J, Philipps V and Tsitrone E 2014 Fusion Eng. Des. 89 901
[4] Zinkle S J and Snead L L 2014 Annu. Rev. Mater. Res. 44 241
[5] Roth J, Tsitrone E, Loarte A, Loarer T, Counsell G, Neu R, Philipps V, Brezinsek S, Lehnen M, Coad P, Grisolia C, Schmid K, Krieger K, Kallenbach A, Lipschultz B, Doerner R, Causey R, Alimov V, Shu W, Ogorodnikova O, Kirschner A, Federici G and Kukushkin A 2009 J. Nucl. Mater. 390-391 1
[6] Fu B Q, Lai W S, Yuan Y, Xu H Y, Li C, Jia Y Z and Liu W 2013 Chin. Phys. B 22 126601
[7] Schade P 2010 Int. J. Refract. Met. Hard Mater. 28 648
[8] Yang X, Qiu W, Chen L and Tang J 2019 Tungsten 1 141
[9] Platov Y M, Lazorenko V M, Tovtin V I and Khasanov F A 2011 Inorg. Mater.: Appl. Res. 2 142
[10] Weaver J S, Sun C, Wang Y, Kalidindi S R, Doerner R P, Mara N A and Pathak S 2018 J. Mater. Sci. 53 5296
[11] Field K G, Briggs S A, Sridharan K, Howard R H and Yamamoto Y 2017 J. Nucl. Mater. 489 118
[12] Chen J, Duan Y, Yang Z, Wang L, Wu K, Li K, Ding F, Mao H, Xu J, Gao W, Zhang L, Wu J and Luo G N 2017 Chin. Phys. B 26 095205
[13] Zinkle S J O W 1986 J. Nucl. Mater. 141 548
[14] Yi X, Jenkins M L, Hattar K, Edmondson P D and Roberts S G 2015 Acta Mater. 92 163
[15] Ogorodnikova O V, Gasparyan Y, Efimov V, Ciupiński Ł and Grzonka J 2014 J. Nucl. Mater. 451 379
[16] Zhang H, Wen S L, Pan M, Huang Z, Zhao Y, Liu X and Chen J M 2016 Chin. Phys. B 25 056102
[17] Xiao Y, Huang B, He B, Shi K, Lian Y, Liu X and Tang J 2016 J. Alloys Compd. 678 533
[18] Huang B, He B, Xiao Y, Ang R, Yang J, Liao J, Yang Y, Liu N, Pan D and Tang J 2016 Int. J. Refract. Met. Hard Mater. 54 335
[19] Han J, An Z, Zheng G, Bai F, Li Z, Wang P, Liao X, Liu M, Chen S, Song M and Zhang J 2018 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 418 68
[20] Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S and Garner F A 2013 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 310 75
[21] Beake B D and Goel S 2018 Int. J. Refract. Met. Hard Mater. 75 63
[22] Armstrong D E J, Wilkinson A J and Roberts S G 2011 Phys. Scr. T145 014076
[23] Lorenz D, Zeckzer A, Hilpert U, Grau P, Johansen H and Leipner H S 2003 Phys. Rev. B 67 172101
[24] Kasada R, Takayama Y, Yabuuchi K and Kimura A 2011 Fusion Eng. Des. 86 2658
[25] Hasegawa A, Tanno T, Nogami S and Satou M 2011 J. Nucl. Mater. 417 491
[26] Bolshakov A and Pharr G M 1998 J. Mater. Res. 13 1049
[27] Liu P P, Wan F R and Zhan Q 2015 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 342 13
[28] Wang Z Q, Zhao Q, Wei Y P, et al. 2018 J. Alloys Compd. 732 406
[29] Takayama Y, Kasada R, Sakamoto Y, Yabuuchi K, Kimura A, Ando M, Hamaguchi D and Tanigawa H 2013 J. Nucl. Mater. 442 S23
[30] Yabuuchi K, Yano H, Kasada R, Kishimoto H and Kimura A 2011 J. Nucl. Mater. 417 988
[31] Snow D 1972 Metall. Trans. 3 2375
[32] El-Atwani O, et al. 2019 Acta Mater. 165 118
[33] Tan X, Luo L, Chen H, Zhu X, Zan X, Luo G, Chen J, Li P, Cheng J, Liu D and Wu Y 2015 Sci. Rep. 5 12755
[34] Zhang Z X, Chen D S, Han W T and Kimura A 2015 Fusion Eng. Des. 98-99 2103
[1] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[2] Effect of tellurium (Te4+) irradiation on microstructure and associated irradiation-induced hardening
Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Guanhong Lei(雷冠虹), Ondrej Muránsky, Tao Wei, and Mihail Ionescu. Chin. Phys. B, 2021, 30(5): 056108.
[3] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[4] Weakening effect of plastic yielding inception in thin hard coating systems
Xiao Huang(黄啸), Shujun Zhou(周述军), and Tianmin Shao(邵天敏). Chin. Phys. B, 2021, 30(3): 038104.
[5] Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation
Kai-Heng Shao(邵凯恒), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(11): 116104.
[6] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[7] Hardening effect of multi-energyW2+-ion irradiation on tungsten–potassium alloy
Yang-Yi-Peng Song(宋阳一鹏), Wen-Bin Qiu(邱文彬), Long-Qing Chen(陈龙庆), Xiao-Liang Yang(杨晓亮), Hao Deng(邓浩), Chang-Song Liu(刘长松), Kun Zhang(张坤)†, and Jun Tang(唐军)‡. Chin. Phys. B, 2020, 29(10): 105202.
[8] Properties of negative thermal expansion β-eucryptite ceramics prepared by spark plasma sintering
Li-Min Zhao(赵利敏), Yong-Guang Cheng(程永光), Hao-Shan Hao(郝好山), Jiao Wang(王娇), Shao-Hui Liu(刘少辉), Bao-Sen Zhang(张宝森). Chin. Phys. B, 2018, 27(9): 096501.
[9] Molecular dynamics study of plastic deformation mechanism in Cu/Ag multilayers
Yuan-Yuan Tian(田圆圆), Jia Li(李甲), Ze-Ying Hu(胡泽英), Zhi-Peng Wang(王志鹏), Qi-Hong Fang(方棋洪). Chin. Phys. B, 2017, 26(12): 126802.
[10] Indenter size effect on the reversible incipient plasticity of Al (001) surface: Quasicontinuum study
Tang Dan (唐丹), Shao Yu-Fei (邵宇飞), Li Jiu-Hui (李久会), Zhao Xing (赵星), Qi Yang (祁阳). Chin. Phys. B, 2015, 24(8): 086805.
[11] Optimization of intergrain connection in high-temperature superconductor Bi2Sr2CaCu2Ox
Li Cheng-Shan (李成山), Zhang Sheng-Nan (张胜楠), Hao Qing-Bin (郝清滨), Ma Xiao-Bo (马小波), Lu Tian-Ni (卢天倪), Zhang Ping-Xiang (张平祥). Chin. Phys. B, 2015, 24(7): 077401.
[12] Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel
Sun Shi-Cheng (孙世成), Sun Gui-Xun (孙贵训), Jiang Zhong-Hao (江忠浩), Ji Chang-Tao (季长涛), Liu Jia-An (刘家安), Lian Jian-She (连建设). Chin. Phys. B, 2014, 23(2): 026104.
[13] Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs):A molecular dynamics approach
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Yongqing Cai, S. A. Ahmad. Chin. Phys. B, 2013, 22(9): 096101.
[14] Dislocation-mediated creep process in nanocrystalline Cu
Mu Jun-Wei (穆君伟), Sun Shi-Cheng (孙世成), Jiang Zhong-Hao (江忠浩), Lian Jian-She (连建设), Jiang Qing (蒋青). Chin. Phys. B, 2013, 22(3): 037303.
[15] Molecular dynamics study of mechanical characteristics of Ni/Cu bilayer using nanoindentation
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, S. A. Ahmad. Chin. Phys. B, 2012, 21(12): 126802.
No Suggested Reading articles found!