Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 046106    DOI: 10.1088/1674-1056/ab7804
Special Issue: SPECIAL TOPIC — Ion beam technology
SPECIAL TOPIC—Ion beam technology Prev   Next  

In situ luminescence measurement of 6H-SiC at low temperature

Meng-Lin Qiu(仇猛淋)1, Peng Yin(殷鹏)1, Guang-Fu Wang(王广甫)1,2, Ji-Gao Song(宋纪高)1, Chang-Wei Luo(罗长维)1, Ting-Shun Wang(王庭顺)1, Guo-Qiang Zhao(赵国强)1, Sha-Sha Lv(吕沙沙)1, Feng-Shou Zhang(张丰收)1,2, Bin Liao(廖斌)1
1 Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2 Beijing Radiation Center, Beijing 100875, China
Abstract  To understand the evolution of defects in SiC during irradiation and the influence of temperature, in situ luminescence measurements of 6H-SiC crystal samples were carried out by ion beam induced luminescence (IBIL) measurement under 2 MeV H+ at 100 K, 150 K, 200 K, 250 K, and 300 K. A wide band (400-1000 nm) was found in the spectra at all temperatures, and the intensity of the IBIL spectra was highest at 150 K among the five temperatures. A small peak from 400 nm to 500 nm was only observed at 100 K, related with the D1 defect as a donor-acceptor pair (D-A) recombination. For further understanding the luminescent centers and their evolution, the orange band (1.79 eV) and the green band (2.14 eV) in the energy spectrum were analyzed by Gaussian decomposition, maybe due to the donor-deep defect/conduction band-deep defect transitions and Ti related bound excition, respectively. Finally, a single exponential fit showed that when the temperature exceeded 150 K, the two luminescence centers' resistance to radiation was reduced.
Keywords:  ion beam induced luminescence      6H-SiC      temperature  
Received:  31 December 2019      Revised:  17 February 2020      Accepted manuscript online: 
PACS:  61.82.Fk (Semiconductors)  
  61.80.Jh (Ion radiation effects)  
  61.72.J- (Point defects and defect clusters)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11905010), the Fundamental Research Funds for the Central Universities, China (Grant No. 2018NTST04), the China Postdoctoral Science Foundation (Grant No. 2019M650526), and Guangdong Province Key Area R&D Program, China (Grant No. 2019B090909002).
Corresponding Authors:  Guang-Fu Wang     E-mail:  88088@bnu.edu.cn

Cite this article: 

Meng-Lin Qiu(仇猛淋), Peng Yin(殷鹏), Guang-Fu Wang(王广甫), Ji-Gao Song(宋纪高), Chang-Wei Luo(罗长维), Ting-Shun Wang(王庭顺), Guo-Qiang Zhao(赵国强), Sha-Sha Lv(吕沙沙), Feng-Shou Zhang(张丰收), Bin Liao(廖斌) In situ luminescence measurement of 6H-SiC at low temperature 2020 Chin. Phys. B 29 046106

[1] Neudeck P G 1995 J. Electron. Mater. 24 283
[2] Casady J B and Johnson R W 1996 Solid. State. Electron. 39 1409
[3] Fissel A, Richter W, Furthmüller J and Bechstedt F 2001 Appl. Phys. Lett. 78 2512
[4] Storasta L, Carlsson F H C, Sridhara S G, Bergman J P, Henry A, Egilsso T, Hallén A and Janzén E 2001 Appl. Phys. Lett. 78 46
[5] Wysmolek A, Mroziński P, Dwiliński R, Vlaskina S and Kamińska M 1995 Acta Phys. Pol. A 87 437
[6] Huang W, Chen Z Z, Chang S H, Li Z Z and Shi E W 2010 Mater. Sci. Eng. B 170 139
[7] Young A P, Jones J and Brillson L J 1999 J. Vac. Sci. Technol. A. 17 2692
[8] Wei Y, Künecke U, Wellmann P and Ou H 2017 2017 International Conference on Silicon Carbide and Related Materials, September 17-22, 2017, Washington DC, USA
[9] Eberlein T A G, Jones R, Öberg S and Briddon P R 2006 Phys. Rev. B 74 144106
[10] Klettke O, Reshanov S A, Pensl G, Devaty R P and Choyke W J 2001 Physica B 308-310 687
[11] Peres M, Alves L C, Rocha F, Catarino N, Cruz C, Alves E, Silva A G, Víllora E G, Shimamura K and Lorenz K 2018 Phys. Status. Solidi. A 215 1800190
[12] Qiu M L, Yin P, Luo C W, Zheng L, Chu Y J, Xu M and Wang G F 2019 Nucl. Instrum. Meth. Phys. Res. B 450 69
[13] Pensl G, Schmid F, Ciobanu F, Laube M, Reshanov S A, Schulze N, Semmelroth K, Schöner A, Wagner G and Nagasawa H 2003 Mater. Sci. Forum 433-436 365
[14] Devaty R P and Choyke W J 1997 Phys. Status Solidi. A 162 5
[15] Wang O, Ding Y L, Zhong, Z Q, Yuan J, Gong M, Chen X D, Fung S and Beling C D 2004 Chinese. J. Light Scattering 16 66 (in Chinese)
[16] Chu Y J, Wang G F, Qiu M L, Xu M and Zheng L 2016 Chin. Phys. Lett. 33 106101
[17] Zheng L, Wang G F, Qiu M L, Chu Y J, Xu M and Yin P 2017 Chin. Phys. Lett. 34 087801
[18] Umeda N, Vasilets V N, Bandourko V V and Kishimotoc N 2002 Nucl. Instrum. Methods Phys. Res. Sect. B 191 708
[19] Sullivan P A and Baragiola R A 1994 J. Appl. Phys. 76 4847
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[4] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[5] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[8] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[9] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[10] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[11] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[12] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[13] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[14] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[15] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
No Suggested Reading articles found!