Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 036201    DOI: 10.1088/1674-1056/ab7440
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles investigation on ideal strength of B2 NiAl and NiTi alloys

Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东)
Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

For B2 NiAl and NiTi intermetallic compounds, the ideal stress-strain image is lack from the perspective of elastic constants. We use first-principles calculation to investigate the ideal strength and elastic behavior under the tensile and shear loads. The relation between the ideal strength and elastic constants is found. The uniaxial tension of NiAl and NiTi along <001> crystal direction leads to the change from tetragonal path to orthogonal path, which is driven by the vanishing of the shear constant C66. The shear failure under {110}<111> shear deformation occurring in process of tension may result in a small ideal tensile strength (~2 GPa) for NiTi. The unlikeness in the ideal strength of NiAl and NiTi alloys is discussed based on the charge density difference.

Keywords:  ideal strength      stress-strain      elastic constants      first-principles calculation      NiAl and NiTi      charge density difference  
Received:  07 August 2019      Revised:  30 December 2019      Accepted manuscript online: 
PACS:  62.20.de (Elastic moduli)  
  64.70.qd (Thermodynamics and statistical mechanics)  
  74.20.Pq (Electronic structure calculations)  
Fund: 

Project supported by the Science Challenge Project, China (Grant No. TZ2018002) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-18-013A3).

Corresponding Authors:  Fu-Yang Tian, Xiao-Dong Ni     E-mail:  fuyang@ustb.edu.cn;nixiaodong@ustb.edu.cn

Cite this article: 

Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东) First-principles investigation on ideal strength of B2 NiAl and NiTi alloys 2020 Chin. Phys. B 29 036201

[1] Raynolds J E, Smith J R, Zhao G L and Srolovitz D J 1996 Phys. Rev. B 53 13883
[2] Zhang X Y, Sprengel W, Reichle K J, Blaurock K, Henes R and Schaefer H E 2003 Phys. Rev. B 68 224102
[3] Korzhavyi P A, Ruban A V, Lozovoi A Y, Vekilov Y K, Abrikosov I A and Johansson B 2000 Phys. Rev. B 61 6003
[4] Lui S C, Davenport J W, Plummer E W, Zehner D M and Fernando G W 1990 Phys. Rev. B 42 1582
[5] Casalena L, Bigelow G S, Gao Y, Benafan O, Noebe R D, Wang Y and Mills M J 2017 Intermetallics 86 33
[6] Hansen K H, Gottschalck J, Petersen L, Hammer B, Laegsgaard E, Besenbacher F and Stensgaard I 2001 Phys. Rev. B 63 115421
[7] Mishin Y, Mehl M J and Papaconstantopoulos D A 2002 Phys. Rev. B 65 224114
[8] Hatcher N, Kontsevoi O Y and Freeman A J 2009 Phys. Rev. B 80 144203
[9] Zarkevich N A and Johnson D D 2014 Phys. Rev. B 90 060102
[10] Chen Z, Qin S, Shang J, Wang F and Chen Y 2018 Intermetallics 94 47
[11] Mahmud A, Wu Z, Zhang J, Liu Y and Yang H 2018 Intermetallics 103 52
[12] Xing H, Dong A, Huang J, Zhang J and Sun B 2018 J. Mater. Sci. & Technol. 34 620
[13] Lazar P and Podloucky R 2009 Intermetallics 17 675
[14] Lazar P and Podloucky R 2006 Phys. Rev. B 73 104114
[15] Lu J M, Hu Q M and Yang R 2009 J. Mater. Sci. & Technol. 25 215
[16] Tanaka K and Koiwa M 1996 Intermetallics 4 S29
[17] Jamal M, Jalali Asadabadi S, Ahmad I and Rahnamaye Aliabad H A 2014 Comput. Mater. Sci. 95 592
[18] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[19] Zhang N N, Zhang Y J, Yang Y, Zhang P and Ge C C 2019 Chin. Phys. B 28 046301
[20] He X and Li J B 2019 Chin. Phys. B 28 037301
[21] Wu J H and Liu C X 2016 Chin. Phys. Lett. 33 036202
[22] Lei B, Zhang Y Y and Du S X 2019 Chin. Phys. B 28 046803
[23] Wang F N, Li J C, Li Y, Zhang X M, Wang X J, Chen Y F, Liu J, Wang C L, Zhao M L and Mei L M 2019 Chin. Phys. B 28 047101
[24] Jhi S H, Louie S G, Cohen M L and Morris J W Jr 2001 Phys. Rev. Lett. 87 075503
[25] Nagasako N, Asahi R and Hafner J 2012 Phys. Rev. B 85 024122
[26] Li T, Morris J W, Jr., Nagasako N, Kuramoto S and Chrzan D C 2007 Phys. Rev. Lett. 98 105503
[27] Nagasako N, Jahnátek M, Asahi R and Hafner J 2010 Phys. Rev. B 81 094108
[28] Qi L and Chrzan D C 2014 Phys. Rev. Lett. 112 115503
[29] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys-Condens Mat 14 2717
[30] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[31] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Vanderbilt D 1990 Phys. Rev. B 41 7892
[34] Wisesa P, McGill K A and Mueller T 2016 Phys. Rev. B 93 155109
[35] Güler M and Güler E 2013 Chin. Phys. Lett. 30 056201
[36] Chen Z, Fei P and Zhou Y 1995 Acta Math. Sci. 15 283
[37] Hill R 1952 Proc. Phys. Soc. A 65 349
[38] Davenport T, Zhou L and Trivisonno J 1999 Phys. Rev. B 59 3421
[39] Hosoda H and Inamura T 2009 Shape Memory Alloys for Biomedical Applications (New York: CRC Press) pp. 20-36
[40] Li X, Schönecker S, Li W, Varga L K, Irving D L and Vitos L 2018 Phys. Rev. B 97 094102
[41] Sanati M, Albers R C and Pinski F J 1998 Phys. Rev. B 58 13590
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!