Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038504    DOI: 10.1088/1674-1056/ab6969
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector

Xuan-Zhang Li(李炫璋)1,2, Ling Sun(孙令)1,2, Jin-Lei Lu(鲁金蕾)1,2, Jie Liu(刘洁)1,2, Chen Yue(岳琛)1,2, Li-Li Xie(谢莉莉)3, Wen-Xin Wang(王文新)1, Hong Chen(陈弘)1,4, Hai-Qiang Jia(贾海强)1,4, Lu Wang(王禄)1
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Detector Technology Laboratory, Beijing Institute of Space Mechanics&Electricity, Beijing 100076, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We present a method to extend the operating wavelength of the interband transition quantum well photodetector from an extended short-wavelength infrared region to a middle-wavelength infrared region. In the modified InAsSb quantum well, GaSb is replaced with AlSb/AlGaSb, the valence band of the barrier material is lowered, the first restricted energy level is higher than the valence band of the barrier material, the energy band structure forms type-II structure. The photocurrent spectrum manifest that the fabricated photodetector exhibits a response range from 1.9 μm to 3.2 μm with two peaks at 2.18 μm and 3.03 μm at 78 K.
Keywords:  photodetector      energy band calculation      InAsSb/AlSb/AlGaSb quantum well      interband transition  
Received:  25 November 2019      Revised:  27 December 2019      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574362, 61210014, 11374340, and 11474205), the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission of China (Grant No. Z151100003515001), and the National Key Technology R&D Program of China (Grant No. 2016YFB0400302).
Corresponding Authors:  Lu Wang     E-mail:  lwang@iphy.ac.cn

Cite this article: 

Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄) A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector 2020 Chin. Phys. B 29 038504

[1] Craig A P, Al-Saymari F, Jain M, Bainbridge A, Savich G R, Golding T, Krier A, Wicks G W and Marshall A R 2019 Appl. Phys. Lett. 114 151107
[2] Hu W, Li Q, Chen X and Lu W 2019 Acta Phys. Sin. 68 120701 (in Chinese)
[3] Letka V, Bainbridge A, Craig A P, Al-Saymari F and Marshall A R J 2019 Opt. Express 27 23970
[4] Pavlov N and Zegrya G 2016 J. Phys.: Confer. Ser. 769 012076
[5] Cardimona D A, Huang D H, Cowan V and Morath C 2011 Infrared Phys. & Technol. 54 283
[6] Rogalski A 2011 Infrared Phys. & Technol. 54 136
[7] Rogalski A 2010 J. Mod. Opt. 57 1716
[8] Rogalski A 2009 Acta Phys. Pol. 116 389
[9] Rogalski A, Antoszewski J and Faraone L 2009 J. Appl. Phys. 105 091101
[10] Rogalski A 2003 Prog. Quantum Electron. 27 59
[11] Zhang Y, Zhang Y, Guan M, Cui L, Wang C and Zeng Y 2013 J. Appl. Phys. 114 111108
[12] Belenky G, Wang D, Lin Y, Donetsky D, Kipshidze G, Shterengas L, Westerfeld D, Sarney W L and Svensson Stefan P 2013 Appl. Phys. Lett. 102 111108
[13] Maimon S and Wicks G W 2006 Appl. Phys. Lett. 89 151109
[14] Tong J, Tobing L Y, Ni P and Zhang D H 2018 Appl. Surf. Sci. 427 605
[15] Ariyawansa G, Reyner C J, Steenbergen E H, Duran J M, Reding J D, Scheihing J E, Bourassa H R, Liang B L and Huffaker D L 2016 Appl. Phys. Lett. 108 022106
[16] Huang Y, Ryou J H, Dupuis R, D'costa V, Steenbergen E, Fan J, Zhang Y H, Petschke A, Mandl M and Chuang S L 2011 J. Cryst. Growth 314 92
[17] Coderre W M and Woolley J C 1970 Can. J. Phys. 48 463
[18] D'souza A, Robinson E, Ionescu A C, Okerlund D, De Lyon T J, Sharifi H, Roebuck M, Yap D, Rajavel R D, Dhar N, Wijewarnasuriya P S and Grein C 2012 J. Electron. Mater. 41 2671
[19] Yang H, Ma Z, Jiang Y, Wu H, Zuo P, Zhao B, Jia H and Chen H 2017 Sci. Rep. 7 43357
[20] Wu H, Ma Z, Jiang Y, Wang L, Yang H, Li Y, Zuo P, Jia H, Wang W, Zhou J, Liu W and Chen H 2016 Chin. Phys. B 25 117803
[21] Sun Q, Wang L, Jiang Y, Ma Z, Wang W, Sun L, Wang W, Jia H, Zhou J and Chen H 2016 Chin. Phys. Lett. 33 106801
[22] Wang W, Wang L, Jiang Y, Ma Z, Sun L, Liu J, Sun Q, Zhao B, Wang W, Liu W, Jia H and Chen H 2016 Chin. Phys. B 25 097307
[23] Liu J, Wang L, Sun L, Wang W-Q, Wu H, Jiang Y, Ma Z, Wang W, Jia h and Chen H 2018 Acta Phys. Sin. 67 128101 (in Chinese)
[24] Liu J, Lu J, Yue C, Li X, Chen H and Wang L 2019 Appl. Phys. Express 12 032005
[25] Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X and Chen H 2018 Chin. Phys. B 27 047209
[26] Sun Q L, Wang L, Wang W Q, Sun L, Li M C, Wang W X, Jia H Q, Zhou J M and Chen H 2015 Chin. Phys. Lett. 32 106801
[27] Mohammedy F M and Deen M J 2009 J. Mater. Sci.: Mater. Electron. 20 1039
[1] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[2] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[3] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[4] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[5] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[6] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[7] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[8] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[9] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[10] Quantifying plasmon resonance and interband transition contributions in photocatalysis of gold nanoparticle
Liang Dong(董亮), Chengyun Zhang(张成云), Lei Yan(严蕾), Baobao Zhang(张宝宝), Huan Chen(陈环), Xiaohu Mi(弥小虎), Zhengkun Fu(付正坤), Zhenglong Zhang(张正龙), and Hairong Zheng(郑海荣). Chin. Phys. B, 2021, 30(7): 077301.
[11] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[12] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[13] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[14] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[15] Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications
Bin Liu(刘斌) and Hong Zhou(周洪). Chin. Phys. B, 2021, 30(10): 106803.
No Suggested Reading articles found!