Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 027101    DOI: 10.1088/1674-1056/ab5fc5

Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica

Fu-Jie Zhang(张福杰)1, Bao-Hua Zhou(周保花)1, Xiao Liu(刘笑)1, Yu Song(宋宇)2,3, Xu Zuo(左旭)1,4
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China;
2 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;
3 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China;
4 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China
Abstract  Understanding hydrogen diffusion in amorphous SiO2 (a-SiO2), especially under strain, is of prominent importance for improving the reliability of semiconducting devices, such as metal-oxide-semiconductor field effect transistors. In this work, the diffusion of hydrogen atom in a-SiO2 under strain is simulated by using molecular dynamics (MD) with the ReaxFF force field. A defect-free a-SiO2 atomic model, of which the local structure parameters accord well with the experimental results, is established. Strain is applied by using the uniaxial tensile method, and the values of maximum strain, ultimate strength, and Young's modulus of the a-SiO2 model under different tensile rates are calculated. The diffusion of hydrogen atom is simulated by MD with the ReaxFF, and its pathway is identified to be a series of hops among local energy minima. Moreover, the calculated diffusivity and activation energy show their dependence on strain. The diffusivity is substantially enhanced by the tensile strain at a low temperature (below 500 K), but reduced at a high temperature (above 500 K). The activation energy decreases as strain increases. Our research shows that the tensile strain can have an influence on hydrogen transportation in a-SiO2, which may be utilized to improve the reliability of semiconducting devices.
Keywords:  molecular dynamics      tensile strain      amorphous SiO2      hydrogen diffusion  
Received:  04 November 2019      Revised:  04 December 2019      Accepted manuscript online: 
PACS:  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  66.30.-h (Diffusion in solids)  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
Fund: Project supported by the Science Challenge Project, China (Grant No. TZ2016003-1-105) and the CAEP Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201501).
Corresponding Authors:  Xu Zuo     E-mail:

Cite this article: 

Fu-Jie Zhang(张福杰), Bao-Hua Zhou(周保花), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭) Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica 2020 Chin. Phys. B 29 027101

[1] Sheikholeslam S A, Manzano H, Grecu C and Ivanov A 2018 Superlattices Microstruct. 120 561
[2] Pantelides S T, Rashkeev S N, Buczko R, Fleetwood D M and Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2262
[3] Witczak S C, Suehle J S and Gaitan M 1992 Solid State Electron. 35 345
[4] Vanheusden K and Devine R A B 2000 Appl. Phys. Lett. 76 3109
[5] Afanas'ev V V, Adriaenssens G J and Stesmans A 2001 Microelectron. Eng. 59 85
[6] Sheikholeslam S A, Manzano H, Grecu C and Ivanov A 2016 J. Mater. Chem. C 4 8104
[7] Alam M A 2003 IEEE Int. Electron Devices Meet., December 8-10, 2003, Washington DC USA p. 14.4.1
[8] Krishnan A T, Chancellor C, Chakravarthi S, Nicollian P E, Reddy V, Varghese A, Khamankar R B, Krishnan S 2005 IEEE Int. Electron Devices Meet. Tech. Dig., December 5, 2005, Washington, DC, USA, p. 688
[9] KflogluKufluoglu H and Alam M A 2007 IEEE Trans. Electron. Dev. 54 1101
[10] Tuttle B 2000 Phys. Rev. B 61 4417
[11] Devine R A B and Herrera G V 2001 Phys. Rev. B 63 233406
[12] Godet J and Pasquarello A 2006 Phys. Rev. Lett. 97 155901
[13] Godet J and Pasquarello A 2005 Microelectron. Eng. 80 288
[14] Griscom D L 1985 J. Appl. Phys. 58 2524
[15] Yue Y, Wang J, Zhang Y, Song Y and Zuo X 2018 Physica B 533 5
[16] Xiong K, Robertson J and Clark S J 2007 J. Appl. Phys. 102 083710
[17] Plimpton S 1995 J. Comput. Phys. 117 1
[18] Duan F L, Zhang C and Liu Q S 2015 J. Nano Res. 30 59
[19] Petousis I, Mrdjenovich D, Ballouz E, Liu M, Winston D, Chen W, Graf T, Schladt T D, Persson K A and Prinz F B 2017 Sci. Data 4 160134
[20] Mathew K, Zheng C, Winston D, Chen C, Dozier A, Rehr J J, Ong S P and Persson K A 2018 Sci. Data 5 180151
[21] Ebrahem F, Bamer F and Markert B 2018 Comput. Mater. Sci. 149 162
[22] Smedskjaer M M, Bauchy M, Mauro J C, Rzoska S J and Bockowski M 2015 J. Chem. Phys. 143 164505
[23] Wang B, Yu Y, Wang M, Mauro J C and Bauchy M 2016 Phys. Rev. B 93 064202
[24] Yu Y, Krishnan N M A, Smedskjaer M M, Sant G and Bauchy M 2018 J. Chem. Phys. 148 074503
[25] Chowdhury S C, Haque B Z and Gillespie J W 2016 J. Mater. Sci. 51 10139
[26] Kresse G 2007
[27] Wood S M, Eames C, Kendrick E and Islam M S 2015 J. Phys. Chem. C 119 15935
[28] van Duin A C, Merinov B V, Han S S, Dorso C O and Goddard W A, 3rd 2008 J. Phys. Chem. A 112 11414
[29] Sheikholeslam S A, Luo W, Grecu C, Xia G and Ivanov A 2016 J. Non Cryst. Solids 440 7
[30] Bauer T, Lunkenheimer P and Loidl A 2013 Phys. Rev. Lett. 111 225702
[31] Sundararaman S, Ching W Y and Huang L 2016 J. Non Cryst. Solids 445-446 102
[32] Lane J M 2015 Phys. Rev. E 92 012320
[33] Vollmayr K, Kob W and Binder K 1996 Phys. Rev. B 54 15808
[34] Mozzi R L and Warren B E 1969 J. Appl. Crystallogr. 2 164
[35] Fogarty J C, Aktulga H M, Grama A Y, van Duin A C and Pandit S A 2010 J. Chem. Phys. 132 174704
[36] El-Sayed A M, Watkins M B, Afanas'ev V V and Shluger A L 2014 Phys. Rev. B 89 125201
[37] Da Silva J R G, Pinatti D G, Anderson C E and Rudee M L 1975 Philos. Mag. 31 713
[38] Zhang Y, Huang L and Shi Y 2019 Nano Lett. 19 5222
[39] Yuan F and Huang L 2012 J. Non Cryst. Solids 358 3481
[40] Muralidharan K, Oh K D, Deymier P A, Runge K and Simmons J H 2007 J. Mater. Sci. 42 4159
[41] Gupta P K and Kurkjian C R 2005 J. Non Cryst. Solids 351 2324
[42] Muralidharan K, Simmons J H, Deymier P A and Runge K 2005 J. Non Cryst. Solids 351 1532
[43] Pedone A, Malavasi G, Menziani M C, Segre U and Cormack A N 2008 Chem. Mater. 20 4356
[44] Beyer W and Wagner H 1982 J. Appl. Phys. 53 8745
[45] Fink D, Krauser J, Nagengast D, Murphy T A, Erxmeier J, Palmetshofer L, Bräunig D and Weidinger A 1995 Appl. Phys. A 61 381
[46] Verdi L and Miotello A 1993 Phys. Rev. B 47 14187
[47] Cartier E, Buchanan D A, Stathis J H and DiMaria D J 1995 J. Non Cryst. Solids 187 244
[48] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[49] Yue Y, Song Y and Zuo X 2018 Chin. Phys. B 27 037102
[1] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[2] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[3] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[4] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[5] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[6] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[7] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[8] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[9] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[10] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[11] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[12] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[13] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[14] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[15] Influence of external load on friction coefficient of Fe-polytetrafluoroethylene
Xiu-Hong Hao(郝秀红), Deng Pan(潘登), Ze-Yang Zhang(张泽洋), Shu-Qiang Wang(王树强), Yu-Jin Gao(高玉金), Da-Peng Gu(谷大鹏). Chin. Phys. B, 2020, 29(4): 046802.
No Suggested Reading articles found!