Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 026801    DOI: 10.1088/1674-1056/ab6583
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Triphenylene adsorption on Cu(111) and relevant graphene self-assembly

Qiao-Yue Chen(陈乔悦)1, Jun-Jie Song(宋俊杰)3, Liwei Jing(井立威)1, Kaikai Huang(黄凯凯)1, Pimo He(何丕模)1,2, Hanjie Zhang(张寒洁)1
1 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China;
3 Department of Fundamental and Social Science, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
Abstract  Investigations on adsorption behavior of triphenylene (TP) and subsequent graphene self-assembly on Cu(111) were carried out mainly by using scanning tunneling microscopy (STM). At monolayer coverage, TP molecules formed a long-range ordered adsorption structure on Cu(111) with an uniform orientation. Graphene self-assembly on the Cu(111) substrate with TP molecules as precursor was achieved by annealing the sample, and a large-scale graphene overlayer was successfully captured after the sample annealing up to 1000 K. Three different Moiré patterns generated from relative rotational disorders between the graphene overlayer and the Cu(111) substrate were observed, one with 4° rotation between the graphene overlayer and the Cu(111) substrate with a periodicity of 2.93 nm, another with 7° rotation and 2.15 nm of the size of the Moiré supercell, and the third with 10° rotation with a periodicity of 1.35 nm.
Keywords:  triphenylene      graphene      Cu(111)      scanning tunneling microscopy  
Received:  04 November 2019      Revised:  16 December 2019      Published:  05 February 2020
PACS:  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0503100) and the National Natural Science Foundation of China (Grant No. 11790313).
Corresponding Authors:  Pimo He, Hanjie Zhang     E-mail:  zhj_fox@zju.edu.cn;phypmhe@zju.edu.cn

Cite this article: 

Qiao-Yue Chen(陈乔悦), Jun-Jie Song(宋俊杰), Liwei Jing(井立威), Kaikai Huang(黄凯凯), Pimo He(何丕模), Hanjie Zhang(张寒洁) Triphenylene adsorption on Cu(111) and relevant graphene self-assembly 2020 Chin. Phys. B 29 026801

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K and Novoselov K S 2008 Nano Lett. 8 1704
[3] Forbeaux I, Themlin J M and Debever J M 1998 Phys. Rev. 58 16396
[4] Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[5] Zhang X B, Qing F Z and Li X S 2019 Acta Phys. Sin. 68 96801 (in Chinese)
[6] Li J, Gottardi S, Solianyk L, Moreno-López J C and Stöhr M 2016 J. Phys. Chem. C 120 18093
[7] Song J J, Zhang Y X, Zhang H J, Cai Y L, Bao S N and He P M 2016 Appl. Surf. Sci. 367 424
[8] Song J J, Zhang H J, Cai Y L, Zhang Y X, Bao S N and He P M 2015 Nanotechnology 27 055602
[9] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K and Fasel R 2010 Nature 466 470
[10] Lu J, Yeo P S E, Gan C K, Wu P and Loh K P 2011 Nat. Nanotechnol. 6 247
[11] Zhu R J, Huang Y H, Li J Y, Kang N and Xu H Q 2019 Chin. Phys. B 28 67201
[12] Fang W, Hsu A L, Song Y and Kong J 2015 Nanoscale 7 20335
[13] Suzuki N, Wang Y, Elvati P, Qu Z B, Kim K, Jiang S, Baumeister E, Lee J, Yeom B, Bahng J H, Lee J, Violi A, Kotov N A, Michigan U and Ann Arbor M I 2016 ACS Nano 10 1744
[14] Zhou Z, Gao F and Goodman D W 2010 Surf. Sci. 604 L31
[15] Didar B R, Khosravian H, Balbuena P B, et al. 2018 RSC Adv. 8 27825
[16] Niu T C, Zhou M, Zhang J L, Feng Y P and Chen W 2013 J. Am. Chem. Soc. 135 8409
[17] Batzill M 2012 Surf. Sci. Rep. 67 83
[18] Xu Z and Buehler M J 2010 J. Phys.: Condens. Matter 22 485301
[19] Soy E, Liang Z and Trenary M 2015 J. Phys. Chem. C 119 24796
[20] Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
[21] Nguyen V L, Shin B G, Duong D L, Kim S T, Perello D, Lim Y J, Yuan Q H, Ding F, Jeong H Y, Shin H S, Lee S M, Chae S H, Vu Q A, Lee S H and Lee Y H 2015 Adv. Mater. 27 1376
[22] Chen X, Liu S Y, Liu L C, Liu X Q, Liu X M and Wang L 2012 Appl. Phys. Lett. 100 163106
[23] Süle P, Szendrő M, Hwang C and Tapasztó L 2014 Carbon 77 1082
[24] Lu B, Zhang H J, Li H Y, Bao S N, He P and Hao T L 2003 Phys. Rev. B 68 125410
[25] Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[26] Tonigold K and Groß A 2010 J. Chem. Phys. 132 224701
[27] Yan S C, Xie N, Gong H Q, Sun Q, Guo Y, Shan X Y and Lu X H 2012 Chin. Phys. Lett. 29 46803
[28] Ge S P, Lu C and Zhao R G 2006 Chin. Phys. Lett. 23 1558
[29] Qi J, Gao Y X, Huang L, Lin X, Dong J J, Du S X and Gao H J 2019 Chin. Phys. B 28 66801
[30] Song Z P, Bao L, Cao Y, Qi J, Peng H, Wang Q, Huang L, Lu H L, Lin X, Wang Y L, Du S X and Gao J H 2019 Chin. Phys. B 28 56801
[31] Zint S R, Ebeling D, Ahles S, Wegner H A and Schirmeisen A 2016 J. Phys. Chem. C 120 1615
[32] Xu Q M, Han M J, Wan L J, Wang C, Bai C L, Dai B and Yang J L 2003 Chem. Commun. 9 2874
[33] Krüger P, Petukhov M, Domenichini B, Berkó A and Bourgeois S 2012 J. Phys. Chem. C 116 10617
[34] Bilić A, Reimers J R, Hush N S, Hoft R C and Ford M J 2006 J. Chem. Theory Comput. 2 1093
[35] Liu W, Ruiz V G, Zhang G X, Santra B, Ren X, Scheffler M and Tkatchenko A 2013 New J. Phys. 15 53046
[36] Talirz L, Ruffieux P and Fasel R 2016 Adv. Mater. 28 6222
[37] Talirz L, Söde H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Müllen K, Passerone D, Fasel R and Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060
[38] Wan X, Chen K, Liu D Q, Chen J, Miao Q and Xu J B 2012 Chem. Mater. 24 3906
[39] Chen K, Wan X, Liu D Q, Kang Z W, Xie W G, Chen J, Miao Q and Xu J B 2013 Nanoscale 5 5784
[40] Cho J, Gao L, Tian J F, Cao H L, Wu W, Yu Q K, Yitamben E N, Fisher B, Guest J R, Chen Y P and Guisinger N P 2011 ACS Nano 5 3607
[41] N'Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys. 10 043033
[42] Zhao M W, Xia Y Y, Ma Y C, Ying M J, Liu X D and Mei L M 2002 Chin. Phys. Lett. 19 1498
[43] Sidorenkov A V, Kolesnikov S V and Saletsky A M 2016 Eur. Phys. J. B 89 1
[44] He R, Zhao L Y, Petrone N, Kim K S, Roth M, Hone J, Kim P, Pasupathy A and Pinczuk A 2012 Nano Lett. 12 2408
[45] Hattab H, N'Diaye A T, Wall D, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Meyer zu Heringdorf F J and Horn-von Hoegen M 2011 Appl. Phys. Lett. 98 141903
[46] Murata Y, Petrova V, Kappes B B, Ebnonnasir A, Petrov I, Xie Y H, Ciobanu C V and Kodambaka S 2010 ACS Nano 4 6509
[47] Busse C, Lazić P, Djemour R, Coraux J, Gerber T, Atodiresei N, Caciuc V, Brako R, N'Diaye A T, Blügel S, Zegenhagen J and Michely T 2011 Phys. Rev. Lett. 107 036101
[48] Xu W Y, Zhang L Z, Huang L, Que Y D, Wang Y L, Lin X and Du S X 2019 Chin. Phys. B 28 46801
[1] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏), and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[2] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[3] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[4] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[5] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[6] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[7] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[8] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[9] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[10] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[11] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[12] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[13] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[14] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[15] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
No Suggested Reading articles found!