Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 028803    DOI: 10.1088/1674-1056/ab6655
TOPICAL REVIEW—High-throughput screening and design of optoelectronic materials Prev  

Designing solar-cell absorber materials through computational high-throughput screening

Xiaowei Jiang(江小蔚)1,2, Wan-Jian Yin(尹万健)1,2,3
1 College of Energy, Soochow Institute for Energy and Materials Innovations(SIEMIS), Soochow University, Suzhou 215006, China;
2 Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China;
3 Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province&Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
Abstract  Although the efficiency of CH3NH3PbI3 has been refreshed to 25.2%, stability and toxicity remain the main challenges for its applications. The search for novel solar-cell absorbers that are highly stable, non-toxic, inexpensive, and highly efficient is now a viable research focus. In this review, we summarize our recent research into the high-throughput screening and materials design of solar-cell absorbers, including single perovskites, double perovskites, and materials beyond perovskites. BaZrS3 (single perovskite), Ba2BiNbS6 (double perovskite), HgAl2Se4 (spinel), and IrSb3 (skutterudite) were discovered to be potential candidates in terms of their high stabilities, appropriate bandgaps, small carrier effective masses, and strong optical absorption.
Keywords:  solar cell      high-throughput      materials design      first-principles calculations  
Received:  19 November 2019      Revised:  25 December 2019      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.J- (Types of solar cells)  
  88.30.gg (Design and simulation)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700700), the National Natural Science Foundation of China (Grant Nos. 11674237, 11974257, and 51602211), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China, and the Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, China.
Corresponding Authors:  Wan-Jian Yin     E-mail:  wjyin@suda.edu.cn

Cite this article: 

Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健) Designing solar-cell absorber materials through computational high-throughput screening 2020 Chin. Phys. B 29 028803

[1] Armand M and Tarascon J M 2008 Nature 451 652
[2] Gasteiger H A and Marković N M 2009 Science 324 48
[3] Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S and Nocera D G 2010 Chem. Rev. 110 6474
[4] Green M A and Bremner S P 2017 Nat. Materials 16 23
[5] Yin W J, Weng B, Ge J, Sun Q, Li Z and Yan Y 2019 Energy & Environ. Sci. 12 442
[6] Repins I, Contreras M, Romero M, Yan Y, Metzger W, Li J, Johnston S, Egaas B, DeHart C and Scharf J 2008 33rd IEEE Photovoltaic Specialists Conference p. 1
[7] Palik E D 1998 Handbook Optical Constants Solids Vol. 3 (New York: Academic Press)
[8] De Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H and Ballif C 2014 J. Phys. Chem. Lett. 5 1035
[9] Deng H X, Luo J W and Wei S H 2018 Chin. Phys. B 27 117104
[10] Deng H X, Wei S H, Li S S, Li J and Walsh A 2013 Phys. Rev. B 87 125203
[11] Cahen D and Noufi R 1989 Appl. Phys. Lett. 54 558
[12] Zhang L, Da Silva J L, Li J, Yan Y, Gessert T and Wei S H 2008 Phys. Rev. Lett. 101 155501
[13] Jha A R 2009 Solar cell technology and applications (New York: Auerbach Publications)
[14] Rau U, Taretto K and Siebentritt S 2009 Appl. Phys. A 96 221
[15] Zhang S, Wei S H, Zunger A and Katayama-Yoshida H 1998 Phys. Rev. B 57 9642
[16] Chen S, Walsh A, Gong X G and Wei S H 2013 Adv. Mater. 25 1522
[17] Chen S, Gong X, Walsh A and Wei S H 2010 Appl. Phys. Lett. 96 021902
[18] Körbel S, Kammerlander D, Sarmiento-Pérez R, Attaccalite C, Marques M A and Botti S 2015 Phys. Rev. B 91 075134
[19] Park J S, Kim S, Xie Z and Walsh A 2018 Nat. Rev. Mater. 3 194
[20] Yin W J, Wu Y, Wei S H, Noufi R, Al-Jassim M M and Yan Y 2014 Adv. Energy Mater. 4 1300712
[21] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2015 Prog. Photovoltaics: Research Applications 23 1
[22] Walsh A, Payne D J, Egdell R G and Watson G W 2011 Chem. Soc. Rev. 40 4455
[23] Shah A, Torres P, Tscharner R, Wyrsch N and Keppner H 1999 Science 285 692
[24] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[25] Lee B, He J, Chang R P and Kanatzidis M G 2012 Nature 485 486
[26] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[27] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H and Moser J E 2012 Sci. Rep. 2 591
[28] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K and Grätzel M 2012 J. Am. Chem. Soc. 134 17396
[29] Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M and Park N G 2013 Nano Lett. 13 2412
[30] Edri E, Kirmayer S, Cahen D and Hodes G 2013 J. Phys. Chem. Lett. 4 897
[31] Cai B, Xing Y, Yang Z, Zhang W H and Qiu J 2013 Energy & Environ. Sci. 6 1480
[32] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grätzel M 2013 Nature 499 316
[33] Bisquert J 2013 The swift surge of perovskite photovoltaics (New York: ACS Publications)
[34] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
[35] Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764
[36] Gao P, Grätzel M and Nazeeruddin M K 2014 Energy & Environ. Sci. 7 2448
[37] Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photon. 8 506
[38] Bretschneider S A, Weickert J, Dorman J A and Schmidt-Mende L 2014 APL Mater. 2 040701
[39] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623
[40] Park N G 2013 J. Phys. Chem. Lett. 4 2423
[41] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341
[42] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344
[43] McGehee M D 2013 Nature 501 323
[44] McGehee M D 2014 Nat. Mater. 13 845
[45] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S and Alam M A 2015 Science 347 522
[46] Li X, Bi D, Yi C, Décoppet J D, Luo J, Zakeeruddin S M, Hagfeldt A and Grätzel M 2016 Science 353 58
[47] Grancini G, D'Innocenzo V, Dohner E R, Martino N, Kandada A S, Mosconi E, De Angelis F, Karunadasa H, Hoke E and Petrozza A 2015 Chem. Sci. 6 7305
[48] Senthilarasu S, Fernández E F, Almonacid F and Mallick T K 2015 Sol. Energy Mater. Sol. Cells 133 92
[49] Stranks S D, Nayak P K, Zhang W, Stergiopoulos T and Snaith H J 2015 Angew. Chem. Int. Ed. 54 3240
[50] Green M A and Bein T 2015 Nat. Mater. 14 559
[51] Stranks S D and Snaith H J 2015 Nat. Nanotech. 10 391
[52] Grätzel M 2014 Nat. Mater. 13 838
[53] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
[54] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A and Hagfeldt A 2016 Science 354 206
[55] Yin W J, Shi T and Yan Y 2014 Appl. Phys. Lett. 104 063903
[56] Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R and Sargent E H 2014 Nano Lett. 14 6281
[57] Ganose A M, Savory C N and Scanlon D O 2017 Chem. Commun. 53 20
[58] Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Inorg. Chemistry 52 9019
[59] Zhang F, Castaneda J F, Chen S, Wu W, DiNezza M J, Lassise M, Nie W, Mohite A, Liu Y and Liu S 2019 arXiv:1907.03434 [physics.app-ph]
[60] Yin W J, Shi T and Yan Y 2014 Adv. Mater. 26 4653
[61] Yin W J, Yang J H, Kang J, Yan Y and Wei S H 2015 J. Mater. Chem. A 3 8926
[62] Babayigit A, Ethirajan A, Muller M and Conings B 2016 Nat. Mater. 15 247
[63] Hailegnaw B, Kirmayer S, Edri E, Hodes G and Cahen D 2015 J. Phys. Chem. Lett. 6 1543
[64] Babayigit A, Thanh D D, Ethirajan A, Manca J, Muller M, Boyen H G and Conings B 2016 Sci. Rep. 6 18721
[65] Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z and You J 2018 Nat. Commun. 9 2225
[66] Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T and Luther J M 2016 Science 354 92
[67] Eperon G E, Paterno G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 J. Mater. Chem. A 3 19688
[68] Kim Y G, Kim T Y, Oh J H, Choi K S, Kim Y J and Kim S Y 2017 Phys. Chem. Chem. Phys. 19 6257
[69] Frolova L A, Anokhin D V, Piryazev A A, Luchkin S Y, Dremova N N, Stevenson K J and Troshin P A 2016 J. Phys. Chem. Lett. 7 4353
[70] Dastidar S, Hawley C J, Dillon A D, Gutierrez-Perez A D, Spanier J E and Fafarman A T 2017 J. Phys. Chem. Lett. 8 1278
[71] Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S and Lin H W 2017 Adv. Mater. 29 1605290
[72] Huang Y, Yin W J and He Y 2018 J. Phys. Chem. C 122 1345
[73] Ye Q, Zhao Y, Mu S, Ma F, Gao F, Chu Z, Yin Z, Gao P, Zhang X and You J 2019 Adv. Mater. 31 1905143
[74] Yue M, Su J, Zhao P, Lin Z, Zhang J, Chang J and Hao Y 2019 Nano-Micro Lett. 11 91
[75] Chen H, Guo A, Gu X and Feng M 2019 J. Alloys Compd. 789 392
[76] Zhang L, Cui W, Zang Z, Tian F, Li X and Qin G 2019 Sol. Energy 188 224
[77] Li Z, Xu Q, Sun Q, Hou Z and Yin W J 2019 Adv. Funct. Mater. 29 1807280
[78] Li Z and Yin W 2018 J. Semicond. 39 071003
[79] Giustino F and Snaith H J 2016 ACS Energy Lett. 1 1233
[80] Xiao Z, Du K Z, Meng W, Wang J, Mitzi D B and Yan Y 2017 J. Am. Chem. Soc. 139 6054
[81] Xiao Z, Du K Z, Meng W, Mitzi D B and Yan Y 2017 Angew. Chem. 129 12275
[82] Meng W, Wang X, Xiao Z, Wang J, Mitzi D B and Yan Y 2017 J. Phys. Chem. Lett. 8 2999
[83] McClure E T, Ball M R, Windl W and Woodward P M 2016 Chem. Mater. 28 1348
[84] Slavney A H, Hu T, Lindenberg A M and Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138
[85] Volonakis G, Filip M R, Haghighirad A A, Sakai N, Wenger B, Snaith H J and Giustino F 2016 J. Phys. Chem. Lett. 7 1254
[86] Filip M R, Hillman S, Haghighirad A A, Snaith H J and Giustino F 2016 J. Phys. Chem. Lett. 7 2579
[87] Savory C N, Walsh A and Scanlon D O 2016 ACS Energy Lett. 1 949
[88] Greul E, Petrus M L, Binek A, Docampo P and Bein T 2017 J. Mater. Chem. A 5 19972
[89] Volonakis G, Haghighirad A A, Milot R L, Sio W H, Filip M R, Wenger B, Johnston M B, Herz L M, Snaith H J and Giustino F 2017 J. Phys. Chem. Lett. 8 772
[90] Tran T T, Panella J R, Chamorro J R, Morey J R and McQueen T M 2017 Mater. Horizons 4 688
[91] Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H and Zhang L 2017 J. Am. Chem. Soc. 139 2630
[92] Huo Z, Wei S H and Yin W J 2018 J. Phys. D: Appl. Phys. 51 474003
[93] Sun Q, Chen H and Yin W J 2018 Chem. Mater. 31 244
[94] Wang J, Chen H, Wei S H and Yin W J 2019 Adv. Mater. 31 1806593
[95] Yin Y, Huang Y, Wu Y, Chen G, Yin W J, Wei S H and Gong X 2017 Chem. Mater. 29 9429
[96] Goldschmidt V 1926 Naturwissenschaften 14 477
[97] Li C, Soh K C K and Wu P 2004 J. Alloys Compd. 372 40
[98] Li C, Lu X, Ding W, Feng L, Gao Y and Guo Z 2008 Acta Crystallogr. Sect. B: Struct. Sci. 64 702
[99] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[100] Sun Q and Yin W J 2017 J. Am. Chem. Soc. 139 14905
[101] Xu Q, Li Z, Liu M and Yin W J 2018 J. Phys. Chem. Lett. 9 6948
[102] Giannozzi P, De Gironcoli S, Pavone P and Baroni S 1991 Phys. Rev. B 43 7231
[103] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[104] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[105] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[106] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[107] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[108] Shishkin M and Kresse G 2007 Phys. Rev. B 75 235102
[109] Klimeš J, Kaltak M and Kresse G 2014 Phys. Rev. B 90 075125
[110] Yu L and Zunger A 2012 Phys. Rev. Lett. 108 068701
[111] Yu L, Kokenyesi R S, Keszler D A and Zunger A 2013 Adv. Energy Mater. 3 43
[112] Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K and Johnston M B 2014 Energy & Environ. Sci. 7 3061
[113] Hao F, Stoumpos C C, Cao D H, Chang R P and Kanatzidis M G 2014 Nat. Photon. 8 489
[114] Hanusch F C, Wiesenmayer E, Mankel E, Binek A, Angloher P, Fraunhofer C, Giesbrecht N, Feckl J M, Jaegermann W and Johrendt D 2014 J. Phys. Chem. Lett. 5 2791
[115] Sun Q, Wang J, Yin W J and Yan Y 2018 Adv. Mater. 30 1705901
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[7] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[8] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[9] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[10] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
No Suggested Reading articles found!