Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 018503    DOI: 10.1088/1674-1056/ab5fb7
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals

Byung-Ryool Hyun1, Mikita Marus1, Huaying Zhong(钟华英)1, Depeng Li(李德鹏)1, Haochen Liu(刘皓宸)1, Yue Xie(谢阅)1, Weon-kyu Koh2, Bing Xu(徐冰)1,3, Yanjun Liu(刘言军)1, Xiao Wei Sun(孙小卫)1,3
1 Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical&Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
2 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore;
3 Shenzhen Planck Innovation Technologies Co. Ltd, Shenzhen 518112, China
Abstract  Colloidal PbSe nanocrystals (NCs) have gained considerable attention due to their efficient carrier multiplication and emissions across near-infrared and short-wavelength infrared spectral ranges. However, the fast degradation of colloidal PbSe NCs in ambient conditions hampers their widespread applications in infrared optoelectronics. It is well-known that the inorganic thick-shell over core improves the stability of NCs. Here, we present the synthesis of PbSe/PbS core/shell NCs showing wide spectral tunability, in which the molar ratio of lead (Pb) and sulfur (S) precursors, and the concentration of sulfur and PbSe NCs in solvent have a significant effect on the efficient PbS shell growth. The infrared light-emitting diodes (IR-LEDs) fabricated with the PbSe/PbS core/shell NCs exhibit an external quantum efficiency (EQE) of 1.3% at 1280 nm. The ligand exchange to optimize the distance between NCs and chloride treatment are important processes for achieving high performance on PbSe/PbS NC-LEDs. Our results provide evidence for the promising potential of PbSe/PbS NCs over the wide range of infrared optoelectronic applications.
Keywords:  PbSe/PbS core/shell nanocrystal      ligand exchange      infrared light-emitting diodes      external quantum efficiency  
Received:  16 October 2019      Revised:  26 November 2019      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  61.46.Hk (Nanocrystals)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0401702), the National Natural Science Foundation of China (Grant Nos. 61674074 and 61405089), Development and Reform Commission of Shenzhen Project, China (Grant No. [2017]1395), Shenzhen Peacock Team Project, China (Grant No. KQTD2016030111203005), Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, China (Grant No. ZDSYS201707281632549), Guangdong Province's Key R&D Program: Micro-LED Display and Ultra-high Brightness Micro-display Technology, China (Grant No. 2019B010925001), Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, China (Grant No. 2017KSYS007), and Distinguished Young Scholar of National Natural Science Foundation of Guangdong, China (Grant No. 2017B030306010). We thank the start-up fund from Southern University of Science and Technology, Shenzhen, China.
Corresponding Authors:  Xiao Wei Sun     E-mail:  sunxw@sustech.edu.cn

Cite this article: 

Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫) Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals 2020 Chin. Phys. B 29 018503

[1] Agis F G, Heide S V D, Okonkwo C, Tangidongga E and Koonen T 2017 43th European Conference on Optical Communication, September 17-21, 2017, Gothenburg, Sweden, p. 1
[2] Sousa E, Vardasca R, Teixeira S, Seixas A, Mendes J and Costa-Ferreira A 2017 Phys. Technol. 85 315
[3] Willer U, Saraji M, Khorsandi A, Geiser P and Schade W 2006 Opt. Lasers Eng. 44 699
[4] Ionescu B, Suse V, Gadea C, Solomon B, Ionescu D, Islam S and Cordea M 2014 IEEE Lat. Am. Trans. 12 520
[5] Thakur R 2018 Recent Development in Optoelectronic Devices (Rijeka: IntechOpen) ED1-Ruby Srivastava 2018, (Rijeka: IntechOpen) pp. 81-83
[6] Lee W O, Lee H C, Cho C W, Gwon S Y, Park K R, Lee H and Cha J 2012 Opt. Express 51 1
[7] Wise F W 2000 Acc. Chem. Res. 33 773
[8] Sun L, Choi J J, Stachnik D, Bartnik A C, Hyun B R, Malliaras G G, Hanrath T and Wise F W 2012 Nat. Nanotechnol. 7 369
[9] Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L and Sargent E H 2006 Nature 442 180
[10] Rauch T, Böberl M, Tedde S F, Fürst J, Kovalenko M V, Hesser G, Lemmer U, Heiss W and Hayden O 2009 Nat. Photon. 3 332
[11] Murray C, Sun S, Gaschler W, Doyle H, Betley T and Kagan C 2001 IBM J. Res. Dev. 45 47
[12] Hines M A and Scholes G D 2003 Adv. Mater. 15 1844
[13] Pietryga J M, Schaller R D, Werder D, Stewart M H, Klimov V I and Hollingsworth J A 2004 J. Am. Chem. Soc. 126 11752
[14] Weidman M C, Beck M E, Hoffman R S, Prins F and Tisdale W A 2014 ACS Nano 8 6363
[15] Lee J W, Kim D Y, Baek S, Yu H and So F 2016 Small 12 1328
[16] Campos M P, Hendricks M P, Beecher A N, Walravens W, Swain R A, Cleveland G T, Hens Z, Sfeir M Y and Owen J S 2017 J. Am. Chem. Soc. 139 2296
[17] Čapek R K, Yanover D and Lifshitz E 2015 Nanoscale 7 5299
[18] Choi J J, Lim Y F, Santiago-Berrios M B, Oh M, Hyun B R, Sun L, Bartnik A C, Goedhart A, Malliaras G G, Abruña H D, Wise F W and Hanrath T 2009 Nano Lett. 9 3749
[19] Hyun B R, Zhong Y-Wu, Bartnik A C, Sun L, Abruña H D, Wise F W, Goodreau J D, Matthews J R, Leslie T M and Borrelli N F 2008 ACS Nano 2 2206
[20] Hyun B R, Choi J J, Seyler K L, Hanrath T and Wise F W 2013 ACS Nano 7 10938
[21] Kim G H, García de Arquer F P, Yoon Y J, Lan X, Liu M, Voznyy O, Yang Z, Fan F, Ip A H, Kanjanaboos P, Hoogland S, Kim J Y and Sargent E H 2015 Nano Lett. 15 7691
[22] Supran G J, Song K W, Hwang G W, Correa R E, Scherer J, Dauler E A, Shirasaki Y, Bawendi M G and Bulović V 2015 Adv. Mater. 27 1437
[23] Gong X, Yang Z, Walters G, Comin R, Ning Z, Beauregard E, Adinolfi V, Voznyy O and Sargent E H 2016 Nat. Photon. 10 253
[24] Yang X, Ren F, Wang Y, Ding T, Sun H, Ma D and Sun X W 2017 Sci. Rep. 7 14741
[25] Pradhan S, Di Stasio F, Bi Y, Gupta S, Christodoulou S, Stavrinadis A and Konstantatos G 2019 Nat. Nanotechnol. 14 72
[26] Dai Q, Wang Y, Zhang Y, Li X, Li R, Zou B, Seo J, Wang Y, Liu M and Yu W W 2009 Langmuir 25 12320
[27] Leschkies K S, Kang M S, Aydil E S and Norris D J 2010 J. Phys. Chem. C 114 9988
[28] Chappell H E, Hughes B K, Beard M C, Nozik A J and Johnson J C 2011 J. Phys. Chem. Lett. 2 889
[29] Pietryga J M, Werder D J, Williams D J, Casson J L, Schaller R D, Klimov V I and Hollingsworth J A 2008 J. Am. Chem. Soc. 130 4879
[30] Brumer M, Kigel A, Amirav L, Sashchiuk A, Solomesch O, Tessler N and Lifshitz E 2005 Adv. Funct. Mater. 15 1111
[31] Jasieniak J, Califano M and Watkins S E 2011 ACS Nano 5 5888
[32] Kim S, Fisher B, Eisler H J and Bawendi M 2003 J. Am. Chem. Soc. 125 11466
[33] Bartnik A C, Wise F W, Kigel A and Lifshitz E 2007 Phys. Rev. B 75 245424
[34] Hyun B R, Zhong Y W, Bartnik A C, Sun L, Abruña H D, Wise F W, Goodreau J D, Matthews J R, Leslie T M and Borrelli N F 2008 ACS Nano 2 2206
[35] Lifshitz E, Vaxenburg R, Maikov G I, Yanover D, Brusilovski A, Tilchin J and Sashchiuk A 2011 (Cambridge: Elsevier) p. 181
[36] García-Santamaría F, Chen Y, Vela J, Schaller R D, Hollingsworth J A and Klimov V I 2009 Nano Lett. 9 3482
[37] Chen Y, Vela J, Htoon H, Casson J L, Werder D J, Bussian D A, Klimov V I and Hollingsworth J A 2008 J. Am. Chem. Soc. 130 5026
[38] Anikeeva P O, Madigan C F, Halpert J E, Bawendi M G and Bulovic V 2008 Phys. Rev. B 78 085434
[39] Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C, Pietryga J M and Klimov V I 2013 Nat. Commun. 4 2661
[40] Lim J, Park Y S and Klimov V I 2018 Nat. Mater. 17 42
[41] Shapiro A, Jang Y, Rubin-Brusilovski A, Budniak A K, Horani F, Sashchiuk A and Lifshitz E 2016 Chem. Mater. 28 6409
[42] Pal B N, Ghosh Y, Brovelli S, Laocharoensuk R, Klimov V I, Hollingsworth J A and Htoon H 2012 Nano Lett. 12 331
[43] Lin Q, Makarov N S, Koh W, Velizhanin K A, Cirloganu C M, Luo H, Klimov V I and Pietryga J M 2015 ACS Nano 9 539
[44] Delin A, Ravindran P, Eriksson O and Wills J M 1998 Int. J. Quantum. Chem. 69 349
[45] Chen O, Zhao J, Chauhan V P, Cui J, Wong C, Harris D K, Wei H, Han H S, Fukumura D, Jain R K and Bawendi M G 2013 Nat. Mater. 12 445
[46] Moreels I, Lambert K, De Muynck D, Vanhaecke F, Poelman D, Martins J C, Allan G and Hens Z 2007 Chem. Mater. 19 6101
[47] Bartnik A C 2011 The Dependence Of Lead-Salt Nanocrystal Properties On Morphology And Dielectric Environment (Ph.D. Dissertation) (Ithaca: Cornell University)
[48] Sashchiuk A, Yanover D, Rubin-Brusilovski A, Maikov G I, Čapek R K, Vaxenburg R, Tilchin J, Zaiats G and Lifshitz E 2013 Nanoscale 5 7724
[49] Jang Y, Shapiro A, Isarov M, Rubin-Brusilovski A, Safran A, Budniak A K, Horani F, Dehnel J, Sashchiuk A and Lifshitz E 2017 Chem. Commun. 53 1002
[50] Wehrenberg B L, Wang C and Guyot-Sionnest P 2002 J. Phys. Chem. B 106 10634
[51] Liu H and Guyot-Sionnest P 2010 J. Phys. Chem. C 114 14860
[52] Semonin O E, Johnson J C, Luther J M, Midgett A G, Nozik A J and Beard M C 2010 J. Phys. Chem. Lett. 1 2445
[53] Lifshitz E 2015 J. Phys. Chem. Lett. 6 4336
[54] Guyot-Sionnest P, Wehrenberg B and Yu D 2005 J. Chem. Phys. 123 074709
[55] Aharoni A, Oron D, Banin U, Rabani E and Jortner J 2008 Phys. Rev. Lett. 100 057404
[56] Nanda J, Ivanov S A, Achermann M, Bezel I, Piryatinski A and Klimov V I 2007 J. Phys. Chem. C 111 15382
[57] Hatami F, Grundmann M, Ledentsov N N, Heinrichsdorff F, Heitz R, Böhrer J, Bimberg D, Ruvimov S S, Werner P, Ustinov V M, Kop'ev P S and Alferov Zh I 1998 Phys. Rev. B 57 4635
[58] Dennis A M, Mangum B D, Piryatinski A, Park Y S, Hannah D C, Casson J L, Williams D J, Schaller R D, Htoon H and Hollingsworth J A 2012 Nano Lett. 12 5545
[59] Yanover D, Vaxenburg R, Tilchin J, Rubin-Brusilovski A, Zaiats G, Čapek R K, Sashchiuk A and Lifshitz E 2014 J. Phys. Chem. C 118 17001
[60] Bae W K, Joo J, Padilha L A, Won J, Lee D C, Lin Q, Koh W, Luo H, Klimov V I and Pietryga J M 2012 J. Am. Chem. Soc. 134 20160
[61] Zhang J, Gao J, Church C P, Miller E M, Luther J M, Klimov V I and Beard M C 2014 Nano Lett. 14 6010
[62] Marshall A R, Young M R, Nozik A J, Beard M C and Luther J M 2015 J. Phys. Chem. Lett. 6 2892
[63] Wang Z B, Helander M G, Qiu J, Liu Z W, Greiner M T and Lu Z H 2010 J. Appl. Phys. 108 024510
[64] Wang Z B, Helander M G, Qiu J, Puzzo D P, Greiner M T, Hudson Z M, Wang S, Liu Z W and Lu Z H 2011 Nat. Photon. 5 753
[65] Caram J R, Bertram S N, Utzat H, Hess W R, Carr J A, Bischof T S, Beyler A P, Wilson M W B and Bawendi M G 2016 Nano Lett. 16 6070
[66] Mott N F and Gurney R W 1940 Electronic Processes in Ionic Crystals (New York: Oxford University Press) p. 1142
[67] Rose A 1955 Phys. Rev. 97 1538
[68] Hikmet R A M, Talapin D V and Weller H 2003 J. Appl. Phys. 93 3509
[69] Steckel J S, Coe-Sullivan S, Bulović V and Bawendi M G 2003 Adv. Mater. 15 1862
[70] Choudhury K R, Song D W and So F 2010 Org. Electron. 11 23
[1] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[2] InP quantum dots-based electroluminescent devices
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇). Chin. Phys. B, 2019, 28(11): 118103.
[3] Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering
Dan Wang(王丹), Bingbing Lin(林兵兵), Taipeng Shen(申太鹏), Jun Wu(吴君), Fuhua Hao(豪富华), Chunchao Xia(夏春潮), Qiyong Gong(龚启勇), Huiru Tang(唐惠儒), Bin Song(宋彬), Hua Ai(艾华). Chin. Phys. B, 2016, 25(7): 077504.
[4] Effects of polarization and p-type GaN resistivity on the spectral response of InGaN/GaN multiple quantum well solar cells
Yang Jing (杨静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Chen Ping (陈平), Li Liang (李亮), Wu Liang-Liang (吴亮亮), Le Ling-Cong (乐伶聪), Li Xiao-Jing (李晓静), He Xiao-Guang (何晓光), Wang Hui (王辉), Zhu Jian-Jun (朱建军), Zhang Shu-Ming (张书明), Zhang Bao-Shun (张宝顺), Yang Hui (杨辉). Chin. Phys. B, 2014, 23(6): 068801.
No Suggested Reading articles found!