Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 010305    DOI: 10.1088/1674-1056/ab5939
GENERAL Prev   Next  

Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity

Lu-Cong Lu(陆路聪)1,2, Guan-Yu Wang(王冠玉)3, Bao-Cang Ren(任宝藏)2, Mei Zhang(章梅)1, Fu-Guo Deng(邓富国)1,4
1 Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China;
2 Department of Physics, Capital Normal University, Beijing 100048, China;
3 College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China;
4 NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Abstract  The decoherence of entangled states caused by the noisy channel is a salient problem for reducing the fidelity of quantum communication. Here we present a heralded two-photon entanglement purification protocol (EPP) using heralded high-fidelity parity-check gate (HH-PCG), which can increase the entanglement of nonlocal two-photon polarization mixed state. The HH-PCG is constructed by the input-output process of nitrogen-vacancy (NV) center in diamond embedded in a single-sided optical cavity, where the errors caused by the imperfect interaction between the NV center-cavity system and the photon can be heralded by the photon detector. As the unwanted components can be filtrated due to the heralded function, the fidelity of the EPP scheme can be enhanced considerably, which will increase the fidelity of quantum communication processing.
Keywords:  quantum communication      heralded entanglement purification      heralded parity-check gate  
Received:  28 August 2019      Revised:  04 November 2019      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11674033, 11474026, 11604226, and 11475021) and Science and Technology Program Foundation of the Beijing Municipal Commission of Education of China (Grant Nos. KM201710028005 and CIT&TCD201904080).
Corresponding Authors:  Bao-Cang Ren     E-mail:  renbaocang@cnu.edu.cn

Cite this article: 

Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国) Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity 2020 Chin. Phys. B 29 010305

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Lombardi E, Sciarrino F, Popescu S and De Martini F 2002 Phys. Rev. Lett. 88 070402
[3] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[4] Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282
[5] Bennett C H and Brassard G 1984 International Conference on Computers, Systems & Signal Processing (Bangalore, India 10-12 December 1984) pp. 175-179
[6] Ekert A K 1991 Phys. Rev. Lett. 67 661
[7] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[8] Buttler W T, Hughes R J, Kwiat P G, Lamoreaux S K, Luther G G, Morgan G L, Nordholt J E, Peterson C G and Simmons C M 1998 Phys. Rev. Lett. 81 3283
[9] Stucki D, Walenta N, Vannel F, Thew R T, Gisin N, Zbinden H, Gray S, Towery C R and Ten S 2009 New J. Phys. 11 075003
[10] Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X, Chen T Y, Zhang Q and Pan J W 2014 Phys. Rev. Lett. 113 190501
[11] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[12] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[13] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[14] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q and Long G L 2016 Light: Sci. Appl. 5 e16144
[15] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[16] Niu P H, Zhou Z R, Lin Z S, Zhong W, Sheng Y B, Yin L G and Long G L 2018 Sci. Bull. 63 1345
[17] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[18] Luo G F, Zhou R G and Hu W W 2019 Chin. Phys. B 28 40302
[19] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[20] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[21] Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D and Kimble H J 2007 Science 316 1316
[22] Sangouard N, Simon C, de Riedmatten H and Gisin N 2011 Rev. Mod. Phys. 83 33
[23] Denning E V, Gangloff D A, Atatüre M, Mork J and Le Gall C 2019 Phys. Rev. Lett. 123 140502
[24] Qiu T H, Li H, Xie M, Liu Q and Ma H Y 2019 Opt. Express 27 27477
[25] Dou J P, Li H, Pang X L, Zhang C N, Yang T H and Jin X M 2019 Acta Phys. Sin. 68 30307 (in Chinese)
[26] Muralidharan S, Kim J, Lütkenhaus N, Lukin M D and Jiang L 2014 Phys. Rev. Lett. 112 250501
[27] Rozpędek F, Yehia R, Goodenough K, Ruf M, Humphreys P C, Hanson R, Wehner S and Elkouss D 2019 Phys. Rev. A 99 052330
[28] Li Z D, Zhang R, Yin X F, Liu L Z, Hu Y, Fang Y Q, Fei Y Y, Jiang X, Zhang J, Li L, Liu N L, Xu F, Chen Y A and Pan J W 2019 Nat. Photon. 13 644
[29] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[30] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[31] Sheng Y B, Pan J, Guo R, Zhou L and Wang L 2015 Sci. Chin. Phys. Mech. & Astron. 58 1
[32] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[33] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[34] Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
[35] Li X H 2010 Phys. Rev. A 82 044304
[36] Sheng Y B and Zhou L 2014 Laser Phys. Lett. 11 085203
[37] Pan J W, Simon C, Brukner Ç and Zeilinger A 2001 Nature 410 1067
[38] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[39] Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
[40] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[41] Gao W C, Cao C, Wang T J and Wang C 2017 Quantum Inf. Process. 16 182
[42] Ren B C and Deng F G 2013 Laser Phys. Lett. 10 115201
[43] Wang G Y, Liu Q and Deng F G 2016 Phys. Rev. A 94 032319
[44] Zhou L and Sheng Y B 2017 Ann. Phys. 385 10
[45] Chen Q, Yang W, Feng M and Du J 2011 Phys. Rev. A 83 054305
[46] Neumann P, Mizuochi N, Rempp F, Hemmer P, Watanabe H, Yamasaki S, Jacques V, Gaebel T, Jelezko F and Wrachtrup J 2008 Science 320 1326
[47] Maurer P C, Kucsko G, Latta C, Jiang L, Yao N Y, Bennett S D, Pastawski F, Hunger D, Chisholm N, Markham M, Twitchen D J, Cirac J I and Lukin M D 2012 Science 336 1283
[48] Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J and Awschalom D D 2009 Science 326 1520
[49] Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J and Jelezko F 2010 Science 329 542
[50] Pfaff W, Taminiau T H, Robledo L, Bernien H, Markham M, Twitchen D J and Hanson R 2013 Nat. Phys. 9 29
[51] Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 92 076401
[52] Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Mater. 8 383
[53] Togan E, Chu Y, Trifonov A S, Jiang L, Maze J, Childress L, Dutt M V G, Sorensen A S, Hemmer P R, Zibrov A S and Lukin M D 2010 Nature 466 730
[54] Park Y S, Cook A K and Wang H 2006 Nano Lett. 6 2075
[55] Barclay P E, Fu K M C, Santori C and Beausoleil R G 2009 Appl. Phys. Lett. 95 191115
[56] Englund D, Shields B, Rivoire K, Hatami F, Vučković J, Park H and Lukin M D 2010 Nano Lett. 10 3922
[57] Wolters J, Schell A W, Kewes G, Nüsse N, Schoengen M, Döscher H, Hannappel T, Löchel B, Barth M and Benson O 2010 Appl. Phys. Lett. 97 141108
[58] Bernien H, Hensen B, Pfaff W, Koolstra G, Blok M S, Robledo L, Taminiau T H, Markham M, Twitchen D J, Childress L and Hanson R 2013 Nature 497 86
[59] Hensen B, Bernien H, Dréau A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F L, Schouten R N, Abellán C, Amaya W, Pruneri V, Mitchell M W, Markham M, Twitchen D J, Elkouss D, Wehner S, Taminiau T H and Hanson R 2015 Nature 526 682
[60] Kalb N, Reiserer A A, Humphreys P C, Bakermans J J W, Kamerling S J, Nickerson N H, Benjamin S C, Twitchen D J, Markham M and Hanson R 2017 Science 356 928
[61] Dolde F, Fedder H, Doherty M W, Nöbauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F and Wrachtrup J 2011 Nat. Phys. 7 459
[62] Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H and Lukin M D 2013 Nature 500 54
[63] Zhang T, Liu G Q, Leong W H, Liu C F, Kwok M H, Ngai T, Liu R B and Li Q 2018 Nat. Commun. 9 3188
[64] Taminiau T H, Cramer J, van der Sar T, Dobrovitski V V and Hanson R 2014 Nat. Nanotechnol. 9 171
[65] Waldherr G, Wang Y, Zaiser S, Jamali M, Schulte-Herbrüggen T, Abe H, Ohshima T, Isoya J, Du J F, Neumann P and Wrachtrup J 2014 Nature 506 204
[66] Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303
[67] Eto Y, Noguchi A, Zhang P, Ueda M and Kozuma M 2011 Phys. Rev. Lett. 106 160501
[68] Wang C, Zhang Y, Jiao R Z and Jin G S 2013 Opt. Express 21 19252
[69] Hu C Y, Young A, O'Brien J L, Munro W J and Rarity J G 2008 Phys. Rev. B 78 085307
[70] An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303
[71] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer)
[72] Reithmaier J P, Sęk G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197
[73] Peter E, Senellart P, Martrou D, Lemaître A, Hours J, Gérard J M and Bloch J 2005 Phys. Rev. Lett. 95 067401
[74] Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J and Kimble H J 2006 Nature 443 671
[75] Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu E L and Imamoğlu A 2007 Nature 445 896
[1] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[2] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[3] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[4] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[5] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[6] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[7] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[8] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[9] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[10] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[11] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[12] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
[13] Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(6): 060307.
[14] Continuous variable quantum key distribution
Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀). Chin. Phys. B, 2017, 26(4): 040303.
[15] Optimal multi-photon entanglement concentration with the photonic Faraday rotation
Lan Zhou(周澜), Dan-Dan Wang(王丹丹), Xing-Fu Wang(王兴福), Shi-Pu Gu(顾世浦), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(2): 020302.
No Suggested Reading articles found!