Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 108701    DOI: 10.1088/1674-1056/ab3af4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Quantitative heterogeneity and subgroup classification based on motility of breast cancer cells

Ling Xiong(熊玲)1, Yanping Liu(刘艳平)1,2, Ruchuan Liu(刘如川)1, Wei Yuan(袁伟)3, Gao Wang(王高)1, Yi He(何益)1, Jianwei Shuai(帅建伟)2, Yang Jiao(焦阳)4, Xixiang Zhang(张溪祥)5, Weijing Han(韩伟静)6, Junle Qu(屈军乐)3, Liyu Liu(刘雳宇)1
1 Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China;
2 Department of Physics, Xiamen University, Xiamen 361005, China;
3 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China;
4 Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA;
5 Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
6 Shenzhen Shengyuan Biotechnology Co., Ltd, Shenzhen 518060, China
Abstract  

Cancer cell motility and its heterogeneity play an important role in metastasis, which is responsible for death of 90% of cancer patients. Here, in combination with a microfluidic technique, single-cell tracking, and systematic motility analysis, we present a rapid and quantitative approach to judge the motility heterogeneity of breast cancer cells MDA-MB-231 and MCF-7 in a well-defined three-dimensional (3D) microenvironment with controllable conditions. Following this approach, identification of highly mobile active cells in a medium with epithelial growth factor will provide a practical tool for cell invasion and metastasis investigation of multiple cancer cell types, including primary cells. Further, this approach could potentially become a speedy (~hours) and efficient tool for basic and clinical diagnosis.

Keywords:  cancer metastasis      motility heterogeneity      three-dimensional microenvironment      invasion potential  
Received:  05 July 2019      Revised:  30 July 2019      Accepted manuscript online: 
PACS:  87.19.xj (Cancer)  
  87.85.dh (Cells on a chip)  
  87.85.gj (Movement and locomotion)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11674043 and 11604030), the Fundamental Research Funds for the Central Universities, China (Grant No. 2018CDJDWL0011), the Fundamental and Advanced Research Program of Chongqing, China (Grant No. cstc2018jcyjAX0338), and Arizona State University Start-up Funds, USA.

Corresponding Authors:  Junle Qu, Liyu Liu     E-mail:  jlqu@szu.edu.cn;lyliu@cqu.edu.cn

Cite this article: 

Ling Xiong(熊玲), Yanping Liu(刘艳平), Ruchuan Liu(刘如川), Wei Yuan(袁伟), Gao Wang(王高), Yi He(何益), Jianwei Shuai(帅建伟), Yang Jiao(焦阳), Xixiang Zhang(张溪祥), Weijing Han(韩伟静), Junle Qu(屈军乐), Liyu Liu(刘雳宇) Quantitative heterogeneity and subgroup classification based on motility of breast cancer cells 2019 Chin. Phys. B 28 108701

[1] Sleeman J and Steeg P S 2010 Eur. J. Cancer 46 1177
[2] Steeg P S and Theodorescu D 2008 Nat. Clin. Pract. Oncol. 5 206
[3] Wells A 2000 Adv. Cancer Res. 78 31
[4] Wells A, Grahovac J, Wheeler S, Ma B and Lauffenburger D 2013 Trends Pharmacol. Sci. 34 283
[5] Wells A, Kassis J, Solava J, Turner T and Lauffenburger D A 2002 Acta Oncol. 41 124
[6] Gao H X, Chen X J, Du X N, Guan B C, Liu Y N and Zhang H L 2011 Cell Calcium 50 559
[7] Garcia R, Franklin R A and McCubrey J A 2006 Cell Cycle 5 2820
[8] Han W J, Chen S H, Yuan W, Fan Q H, Tian J X, Wang X C, Chen L Q, Zhang X X, Wei W L, Liu R C, Qu J L, Jiao Y, Austin R H and Liu L Y 2016 Proc. Natl. Acad. Sci. USA 113 11208
[9] Giampieri S, Manning C, Hooper S, Jones L, Hill C S and Sahai E 2009 Nat. Cell Biol. 11 1287
[10] Marusyk A and Polyak K 2010 Biochim. Biophys. Acta-Rev. Cancer 1805 105
[11] Wu P H, Giri A, Sun S X and Wirtz D 2014 Proc. Natl. Acad. Sci. 111 3949
[12] Liu L, Duclos G, Sun B, Lee J, Wu A, Kam Y, Sontag E D, Stone H A, Sturm J C and Gatenby R A 2013 Proc. Natl. Acad. Sci. 110 1686
[13] Tsuji T, Ibaragi S and Hu G F 2009 Cancer Res. 69 7135
[14] Gligorijevic B, Bergman A and Condeelis J 2014 PLOS Biol. 12 e1001995
[15] Wang W, Goswami S, Sahai E, Wyckoff J B, Segall J E and Condeelis J S 2005 Trends Cell Biol. 15 138
[16] Friedl P and Wolf K 2003 Nat. Rev. Cancer 3 362
[17] Han W J, Yuan W, Zhu J R, Fan Q H, Qu J, Liu L Y and Sci-Oncology U-C P 2016 Chin. Phy. B 25 018709
[18] Chen P, Zhang L, Zhang F, Liu J, Bai H, Tang G and Lin L 2012 Biomed. Opt. Express 3 1787
[19] Lee K H, Lee K S, Jung J H, Chang C B and Sung H J 2013 Appl. Phys. Lett. 102 141911
[20] Cheung K J, Gabrielson E, Werb Z and Ewald A J 2013 Cell 155 1639
[21] Sun B 2015 Acta Phys. Sin. 64 058201 (in Chinese)
[22] Piccinini F, Kiss A and Horvath P 2016 Bioinformatics 32 955
[23] Wang S J, Saadi W, Lin F, Nguyen C M C and Jeon N L 2004 Exp. Cell Res. 300 180
[24] Pedersen J N, Li L, Gradinaru C, Austin R H, Cox E C and Flyvbjerg H 2016 Phys. Rev. E 94 062401
[25] Chapman A, del Ama L F, Ferguson J, Kamarashev J, Wellbrock C and Hurlstone A 2014 Cell Rep. 8 688
[26] Fife C M, McCarroll J A and Kavallaris M 2014 Br. J. Pharmacol. 171 5507
[27] Levental K R, Yu H, Kass L, Lakins J N, Egeblad M, Erler J T, Fong S F T, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser D L and Weaver V M 2009 Cell 139 891
[28] Wolf K, Wu Y I, Liu Y, Geiger J, Tam E, Overall C, Stack M S and Friedl P 2007 Nat. Cell Biol. 9 893
[29] Joyce J A and Pollard J W 2009 Nat. Rev. Cancer 9 239
[30] Haeger A, Krause M, Wolf K and Friedl P 2014 Bba-Gen. Subjects 1840 2386
[1] In vitro three-dimensional cancer metastasis modeling: Past, present, and future
Wei-jing Han(韩伟静), Wei Yuan(袁伟), Jiang-rui Zhu(朱江瑞), Qihui Fan(樊琪慧), Junle Qu(屈军乐), Li-yu Liu(刘雳宇), on behalf of the U.S.--China Physical Sciences-Oncology Alliance. Chin. Phys. B, 2016, 25(1): 018709.
No Suggested Reading articles found!