Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 107305    DOI: 10.1088/1674-1056/ab3f98
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases

Feng Chi(迟锋)1, Zhen-Guo Fu(付振国)2, Liming Liu(刘黎明)1, Ping Zhang(张平)2
1 School of Electronic and Information Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528400, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  We study the spin-dependent thermopower in a double-quantum-dot (DQD) embedded between the left and right two-dimensional electron gases (2DEGs) in doped quantum wells under an in-plane magnetic field. When the separation between the DQD is smaller than the Fermi wavelength in the 2DEGs, the asymmetry in the dots' energy levels leads to pronounced quantum interference effects characterized by the Dicke line-shape of the conductance, which are sensitive to the properties of the 2DEGs. The magnitude of the thermopower, which denotes the generated voltage in response to an infinitesimal temperature difference between the two 2DEGs under vanishing charge current, will be obviously enhanced by the Dicke effect. The application of the in-plane magnetic field results in the polarization of the spin-up and spin-down conductances and thermopowers, and enables an efficient spin-filter device in addition to a tunable pure spin thermopower in the absence of its charge counterpart.
Keywords:  quantum dot      spin-dependent thermopower      two-dimensional electron gases  
Received:  22 July 2019      Revised:  26 August 2019      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274101, 51362031, and 11675023), the Innovation Development Fund of China Academy of Engineering Physics (CAEP) (Grant No. ZYCX1921-02), the Presidential Foundation of CAEP (Grant No. YZ2015014), the Initial Project of University of Electronic Science and Technology of China, Zhongshan Institute (Grant No. 415YKQ02), Science and Technology Bureau of Zhongshan, China (Grant Nos. 417S26 and 180809162197886).
Corresponding Authors:  Zhen-Guo Fu, Ping Zhang     E-mail:  fu_zhenguo@iapcm.ac.cn;zhang_ping@iapcm.ac.cn

Cite this article: 

Feng Chi(迟锋), Zhen-Guo Fu(付振国), Liming Liu(刘黎明), Ping Zhang(张平) Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases 2019 Chin. Phys. B 28 107305

[44] Apalkov V M 2007 Phys. Rev. B 75 045337
[1] Bauer G E, Saitoh E and van Wees B J 2010 Nat. Mater. 150 391
[45] Petrosyan L S and Shahbazyan T V 2015 Phys. Rev. B 92 115423
[2] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[46] Wang F N, Li J C, Li Y, Zhang X M, Wang X J, Chen Y F, Liu J, Wang C L, Zhao M L and Mei L M 2019 Chin. Phys. B 28 047101
[47] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[3] Uchida K, Adachi H, Ota T, Nakayama H, Maekawa S and Saitoh E 2010 Appl. Phys. Lett. 97 172505
[4] Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894
[5] Bosu S, Sakuraba Y, Uchida K, Saito K, Ota T, Saitoh E and Takanashi K 2011 Phys. Rev. B 83 224401
[6] Jaworski C M, Yang J, Mack S, Awschalom D, Heremans J and Myers R 2010 Nat. Mater. 9 898
[7] Jaworski C, Myers R, Halperin J E and Heremans J 2012 Nature 487 210
[8] Wu S M, Pearson J E and Bhattacharya A 2015 Phys. Rev. Lett. 114 186602
[9] Wu S M, Zhang W, Kc A, Borisov P, Pearson J E, Jiang J S, Lederman D, Hoffmann A and Bhattacharya A 2016 Phys. Rev. Lett. 116 097204
[10] Tang G M, Chen X B, Ren J and Wang J 2018 Phys. Rev. B 97 081407
[11] Chang P H, Mahfouzi F, Nagaosa N and Nikolić B K 2014 Phys. Rev. B 89 195418
[12] Hwang S Y, López R, Lee M and Sánchez D 2014 Phys. Rev. B 90 115301
[13] Okuma N, Masir M R and MacDonald A H 2017 Phys. Rev. B 95 165418
[14] Chang K 2011 Physics 40 458
[15] Zhang L, Lü T Y, Wang H Q, Zhang W X, Yang S W and Zhang J C 2016 RSC Adv. 6 102172
[16] Lv Y Z, Zhao P and Liu D S 2017 Chin. Phys. Lett. 34 107301
[17] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A and Yang P 2008 Nature 451 163
[18] Boukai A I, Bunimovich Y, Kheli J T, Yu J K, Goddard W A and Heath J R 2008 Nature 451 168
[19] Reddy P, Jang S Y, Segalman R A and Majumdar A 2017 Science 315 1568
[20] Zimbovskaya N A 2018 J. Phys.: Condens. Matter 30 305301
[21] Hammar H, Vasquez J D and Fransson J 2019 Phys. Rev. B 99 115416
[22] Mahan G D and Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436
[23] Hu J, Shi Y, Zhang Z, Zhi R Yang S and Zou B 2019 Chin. Phys. B 28 020701
[24] Bai X F, Chi F, Zheng J and Li Y N 2012 Chin. Phys. B 21 077301
[25] Xue H J, Lü T Q, Zhang H C, Yin H T, Cui L and He Z L 2012 Chin. Phys. B 21 037201
[26] Xu W P, Zhang Y Y, Wang Q and Nie Y H 2016 Chin. Phys. B 25 117307
[27] Scheibner R, Buhmann H, Reuter D, Kiselev M N and Molenkamp L W 2005 Phys. Rev. Lett. 95 176602
[28] Liu J, Sun Q F and Xie X C 2010 Phys. Rev. B 81 245323
[29] Chi F, Zheng J, Lu X D and Zhang K C 2011 Phys. Lett. A 375 1352
[30] Liu Y S, Chi F, Yang X F and Feng J F 2011 J. Appl. Phys. 109 053712
[31] Liu Y S, Hong X F, Feng J F and Yang X F 2011 Nanoscal. Res. Lett. 6 618
[32] Zheng J and Chi F 2012 J. Appl. Phys. 111 093702
[33] Trocha P and Barnaś J 2012 Phys. Rev. B 85 085408
[34] Zhou X F, Qi F H and Jin G J 2014 J. Appl. Phys. 115 153706
[35] Yang X, Zheng J and Guo Y 2015 Physica B 461 122
[36] Yang X, Zheng J, Li C L and Guo Y 2015 J. Phys: Condens. Matter 27 075302
[37] Karwacki ł and Trocha P 2016 Phys. Rev. B 94 085418
[38] Andrade J R P, Peña F J, Gonzaíez A, Avalos-Ovando O and Orellana P A 2017 Phys. Rev. B 96 165413
[39] Wang Q, Xie H Q, Nie Y H and Ren W 2013 Phys. Rev. B 87 075102
[40] Yao H, Zhang C, Niu P B, Li Z J and Nie Y H 2018 Phys. Lett. A 382 3220
[41] Liu L M, Chi F, Fu Z G, Yu S C and Chen H W 2018 Nanoscal. Res. Lett. 13 358
[42] Sun L L, Chi F, Fu Z G, Yu S C, Liu L M and Chen H W 2019 J. Low. Temp. Phys. 194 235
[43] de Guevara M L L, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335
[44] Apalkov V M 2007 Phys. Rev. B 75 045337
[45] Petrosyan L S and Shahbazyan T V 2015 Phys. Rev. B 92 115423
[46] Wang F N, Li J C, Li Y, Zhang X M, Wang X J, Chen Y F, Liu J, Wang C L, Zhao M L and Mei L M 2019 Chin. Phys. B 28 047101
[47] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!