Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 064402    DOI: 10.1088/1674-1056/28/6/064402
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Uniformity principle of temperature difference field in heat transfer optimization

Xue-Tao Cheng(程雪涛)1, Xin-Gang Liang(梁新刚)2
1 Department of Science and Technology of Anhui Province, Hefei 230091, China;
2 Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Abstract  

The uniformity principle of temperature difference field is very useful in heat exchanger analyses and optimizations. In this paper, we analyze some other heat transfer optimization problems in the thermal management system of spacecrafts, including the cooling of thermal components, the one-stream series-wound heat exchanger network, the volume-to-point heat conduction problem, and the radiative heat transfer optimization problem, and have found that the uniformity principle of temperature difference field also holds. When the design objectives under the given constraints are achieved, the distributions of the temperature difference fields are uniform. The principle reflects the characteristic of the distribution of potential in the heat transfer optimization problems. It is also shown that the principle is consistent with the entransy theory. Therefore, although the principle is intuitive and phenomenological, the entransy theory can be the physical basis of the principle.

Keywords:  heat transfer optimization      uniformity principle of temperature difference field      equipartition of potential      entransy theory  
Received:  22 January 2019      Revised:  25 March 2019      Accepted manuscript online: 
PACS:  44.05.+e (Analytical and numerical techniques)  
  44.90.+c (Other topics in heat transfer)  
  05.70.-a (Thermodynamics)  
Fund: 

Project supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China (Grant No. 51621062).

Corresponding Authors:  Xin-Gang Liang     E-mail:  liangxg@mail.tsinghua.edu.cn

Cite this article: 

Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚) Uniformity principle of temperature difference field in heat transfer optimization 2019 Chin. Phys. B 28 064402

[1] Guo Z Y, Zhou S Q, Li Z X and Chen L G 2002 Int. J. Heat Mass Transfer 45 2119
[2] Guo Z Y, Li Z X, Zhou S Q and Xiong D X 1996 Sci. Chin. (Ser. E) 39 68
[3] Zhou S Q 1995 “Uniformity Principle of Temperature Difference Field in Heat Exchanger and Its Application”, Ph. D. thesis (Beijing: Tsinghua University) (in Chinese)
[4] Cheng X T, Zhang Q Z and Liang X G 2012 Appl. Therm. Eng. 38 31
[5] Gao S W, Yang M, Xu Z M, Jin H, Yang S R and Guo Z Y 1997 J. Eng. Thermophys. 18 741 (in Chinese)
[6] Song W M, Meng J A, Liang X G and Li Z X 2008 J. Chem. Ind. Eng. 59 2460 (in Chinese)
[7] Yang S R, Yang M, Li Z B, Yang J S and Jin H 1993 J. Eng. Thermophys. 14 313 (in Chinese)
[8] Fu R H and Zhang X 2017 Int. J. Heat Mass Transfer 114 135
[9] Guo Z Y, Zhu H Y and Liang X G 2007 Int. J. Heat Mass Transfer 50 2545
[10] Cheng X T, Liang X G and Guo Z Y 2011 Chin. Sci. Bull. 56 847
[11] Hua Y C, Zhao T and Guo Z Y 2018 Entropy 20 206
[12] Cheng X T, Xu X H and Liang X G 2011 Sci. Chin. Tech. Sci. 54 964
[13] Cheng X T and Liang X G 2014 Heat Transfer Eng. 35 985
[14] Chen Q, Zhu H Y, Pan N and Guo Z Y 2011 Proc. R. Soc. A-Math. Phys. Eng. Sci. 467 1012
[15] Cheng X T and Liang X G 2011 Int. J. Heat Mass Transfer 54 269
[16] Wang W H, Cheng X T and Liang X G 2013 Chin. Phys. B 22 110506
[17] Wang W H, Cheng X T and Liang X G 2013 Sci. China-Tech. Sci. 56 529
[18] Cheng X T and Liang X G 2013 Energy 56 46
[19] Cheng X T and Liang X G 2012 Energy 44 964
[20] Zhang T, Liu X H, Tang H D and Liu J 2016 Sci. China-Tech. Sci. 59 1463
[21] Huang Z W, Li Z N, Hwang T and Radermacher R 2016 Sci. China-Tech. Sci. 59 1486
[22] Xia S J, Chen L G, Xie Z H and Sun F R 2016 Sci. China-Tech. Sci. 59 1507
[23] Wu J and Yang X P 2016 Sci. China-Tech. Sci. 59 1517
[24] Cheng X T and Liang X G 2015 Chin. Phys. B 24 120503
[25] Li T L, Yuan Z H, Li W, Yang J L and Zhu J L 2016 Energy 101 532
[26] Han C H and Kim K H 2016 J. Therm. Sci. 25 242
[27] Kim K H and Kim K 2015 Int. J. Heat Mass Transfer 84 80
[28] Ahmadi M H, Ahmadi M A, Pourfayaz F and Bidi M 2016 Chem. Phys. Lett. 658 293
[29] Goudarzi N and Talebi S 2018 Ann. Nucl. Energy 111 509
[30] Xu S Z, Wang R Z and Wang L W 2017 Int. J. Refrig. 74 254
[31] Sun C, Cheng X T and Liang X G 2014 Chin. Phys. B 23 050513
[32] Cheng X T, Xu X H and Liang X G 2018 Sci. China-Tech. Sci. 61 843
[33] Cheng X T and Liang X G 2015 Chin. Phys. B 24 060510
[34] Wei S H, Chen L G and Xie Z H 2018 Therm. Sci. Eng. Prog. 7 155
[35] Yu Z Q, Wang P, Zhou W J, Li Z Y and Tao W Q 2018 Int. J. Heat Mass Transfer 116 621
[36] Zhang L, Wei H Y and Zhang X S 2017 Energy 141 661
[37] Guo J F, Huai X L, Li X F, Cai J and Wang Y W 2013 Energy 63 95
[38] Cheng X T 2019 A Critical Perspective of Entropy Generation Minimization in Thermal Analyses and Optimizations (Newcastle: Cambridge Scholars Publishing)
[39] Xia S J, Chen L G and Sun F R 2010 Sci. China-Tech. Sci. 53 960
[40] Xia S J, Chen L G and Sun F R 2009 Chin. Sci. Bull. 54 3587
[41] Feng H J, Chen L G and Xie Z H 2018 Int. J. Heat Mass Transfer 119 640
[42] Wu Y Q 2015 Chin. Phys. B 24 070506
[43] Wu Y Q, Cai L and Wu H J 2016 Chin. Phys. B 25 060507
[1] Optimization of combined endoreversible Carnot heat engines with different objectives
Cheng Xue-Tao, Liang Xin-Gang. Chin. Phys. B, 2015, 24(6): 060510.
No Suggested Reading articles found!