Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 078501    DOI: 10.1088/1674-1056/28/7/078501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of defects properties on InP-based high electron mobility transistors

Shu-Xiang Sun(孙树祥)1, Ming-Ming Chang(常明铭)1, Meng-Ke Li(李梦珂)1, Liu-Hong Ma(马刘红)1, Ying-Hui Zhong(钟英辉)1, Yu-Xiao Li(李玉晓)1, Peng Ding(丁芃)2, Zhi Jin(金智)2, Zhi-Chao Wei(魏志超)3
1 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China;
2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
3 China Academy of Space Technology, Beijing 100086, China
Abstract  

The performance damage mechanism of InP-based high electron mobility transistors (HEMTs) after proton irradiation has been investigated comprehensively through induced defects. The effects of the defect type, defect energy level with respect to conduction band ET, and defect concentration on the transfer and output characteristics of the device are discussed based on hydrodynamic model and Shockley-Read-Hall recombination model. The results indicate that only acceptor-like defects have a significant influence on device operation. Meanwhile, as defect energy level ET shifts away from conduction band, the drain current decreases gradually and finally reaches a saturation value with ET above 0.5 eV. This can be attributed to the fact that at sufficient deep level, acceptor-type defects could not be ionized any more. Additionally, the drain current and transconductance degrade more severely with larger acceptor concentration. These changes of the electrical characteristics with proton radiation could be accounted for by the electron density reduction in the channel region from induced acceptor-like defects.

Keywords:  InP-based high electron mobility transistor      proton radiation      defects properties      output and transfer characteristics  
Received:  14 March 2019      Revised:  17 April 2019      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.61.Ey (III-V semiconductors)  
  14.20.Dh (Protons and neutrons)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11775191, 61404115, 61434006, and 11475256), the Development Fund for Outstanding Young Teachers in Zhengzhou University of China (Grant No. 1521317004), and the Doctoral Student Overseas Study Program of Zhengzhou University, China.

Corresponding Authors:  Ying-Hui Zhong     E-mail:  zhongyinghui@zzu.edu.cn

Cite this article: 

Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超) Effect of defects properties on InP-based high electron mobility transistors 2019 Chin. Phys. B 28 078501

[1] Shangguan L, Ma L H, Li M K, Peng W, Zhong Y H, Su Y F and Duan Z Y 2018 J. Phys. D: Appl. Phys. 51 185603
[2] Wang W, Su Y F, Liu C R, Li D X, Wang P and Duan Z Y 2015 Chin. Phys. Lett. 32 128102
[3] Ma L H, Han W H, Zhao X S, Cao Y Y, Dou Y M and Yang F H 2018 Chin. Phys. B 27 088106
[4] Del Alamo J A 2011 Nature 479 317
[5] Mateos J, Rodilla H, Vasallo B G and González T 2015 J. Comput. Electron. 14 72
[6] Chen J, Zhang Z Y, Zhu M, Xu J T and Li X Y 2017 Nanoscale Res. Lett. 12 33
[7] Wang Y, Sheng X Z, Guo Q L, Li X L, Wang S F, Fu G S, Mazur Y I, Maidaniuk Y, Ware M E, Salamo G J, Liang B L and Huffaker D L 2017 Nanoscale Res. Lett. 12 229
[8] Ajayan J, Ravichandran T, Prajoon P, Pravin J C and Nirmal D 2018 J. Comput. Electron. 17 265
[9] Mei X B, Yoshida W, Lange M, Lee J, Zhou J, Liu P H, Leong K, Zamora A, Padilla J, Sarkozy S, Lai R and Deal W R 2015 IEEE Electron Device Lett. 36 327
[10] Ajayan J and Nirmal D 2016 Superlattices Microstruct. 100 526
[11] Jo H B, Baek J M, Yun D Y, Son S W, Lee J H, Kim T W, Kim D H, Tsutsumi T, Sugiyama H and Matsuzaki H 2018 IEEE Electron Device Lett. 39 1640
[12] Takahashi T, Kawano Y, Makiyama K, Shiba S, Sato M, Nakasha Y and Hara N 2017 IEEE Trans. Electron Device 64 89
[13] Kumar A, Jalota S and Gupta R 2012 Adv. Space Res. 49 1691
[14] Lee I H, Lee C, Choi B K, Yun Y and Chang Y J 2018 J. Korean Phys. Soc. 72 920
[15] Kim H Y, Lo C F, Liu L, Ren F, Kim J and Pearton S J 2012 Appl. Phys. Lett. 100 012107
[16] Rossetto I, Rampazzo F, Gerardin F, Meneghini M, Bagatin M, Zanandrea A, Dua C, di Forte-Poisson M A, Aubry R, Oualli M, Delage S L, Paccagnella A, Meneghesso G and Zanoni E 2015 Solid State Electron. 113 15
[17] Sun S X, Chang M M, Zhang C, Cheng C, Li Y X, Zhong Y H, Ding D, Jin Z and Wei Z C 2018 Phys. Status Solidi RRL 12 1800027
[18] Ratti L, Manghisoni M, Oberti E, Re V, Speziali V, Traversi G, Fallica G and Modica R 2005 IEEE Trans. Nucl. Sci. 52 1040
[19] Wang B, Zhao Y W, Dong Z Y, Deng A H, Miao S S and Yang J 2007 Acta Phys. Sin. 56 1603 (in Chinese)
[20] Zhong Y H, Wang W B, Sun S X, Ding P and Jin Z 2017 Phys. Status Solidi A 214 1700411
[21] Zhong Y H, Yang J, Li X J, Ding P and Jin Z 2015 J. Korean Phys. Soc. 66 1020
[22] Patrick E, Law M, Liu L, Cuervo C V, Xi Y Y, Ren F and Pearton S J 2013 IEEE Trans. Nucl. Sci. 60 4103
[23] Liu M, Zhang Y M, Lü H L and Zhang Y M 2016 J. Semicond. 37 114005
[24] Ge M, Cai Q, Zhang B H, Chen D J, Hu L Q, Xue J J, Lu H, Zhang R and Zheng Y D 2018 Phys. Status Solidi A 215 1700368
[25] Hafsi B, Boubaker A, Ismaïl N, Kalboussi A and Lmimouni K 2015 J. Korean Phys. Soc. 67 1201
[26] Jayakumar G D and Srinivasan R 2017 J. Comput. Electron. 16 307
[27] Sun S X, Ji H F, Yao H J, Li S, Jin Z, Ding P and Zhong Y H 2016 Chin. Phys. B 25 108501
[28] Sun S X, Ma L H, Cheng C, Zhang C, Zhong Y H, Li Y X, Ding P and Jin Z 2017 Phys. Status Solidi A 214 1700322
[29] Liu M, Zhang Y M, Lu H L, Zhang Y M, Zhang J C and Ren X T 2015 Solid State Electron. 109 52
[30] Zhang Z, Cardwell D, Sasikumar A, Kyle E C H, Chen J, Zhang E X, Fleetwood D M, Schrimpf R D, Speck J S, Arehart A R and Ringel S A 2016 J. Appl. Phys. 119 165704
[1] Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2019, 28(2): 027401.
No Suggested Reading articles found!