Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 064202    DOI: 10.1088/1674-1056/28/6/064202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Fast Fourier single-pixel imaging based on Sierra-Lite dithering algorithm

Zhen-Yu Liang(梁振宇)1, Zheng-Dong Cheng(程正东)1, Yan-Yan Liu(刘严严)2, Kuai-Kuai Yu(于快快)2, Yang-Di Hu(胡洋頔)1
1 National University of Defense Technology, State Key Laboratory of Pulsed Power Laser Technology, Hefei 230037, China;
2 Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300000, China
Abstract  

The single-pixel imaging (SPI) technique is able to capture two-dimensional (2D) images without conventional array sensors by using a photodiode. As a novel scheme, Fourier single-pixel imaging (FSI) has been proven capable of reconstructing high-quality images. Due to the fact that the Fourier basis patterns (also known as grayscale sinusoidal patterns) cannot be well displayed on the digital micromirror device (DMD), a fast FSI system is proposed to solve this problem by binarizing Fourier pattern through a dithering algorithm. However, the traditional dithering algorithm leads to low quality as the extra noise is inevitably induced in the reconstructed images. In this paper, we report a better dithering algorithm to binarize Fourier pattern, which utilizes the Sierra-Lite kernel function by a serpentine scanning method. Numerical simulation and experiment demonstrate that the proposed algorithm is able to achieve higher quality under different sampling ratios.

Keywords:  single-pixel imaging      binary Fourier basis pattern      the dithering algorithm  
Received:  15 January 2019      Revised:  27 March 2019      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
  87.63.lt (Laser imaging)  
  42.30.Kq (Fourier optics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61271376) and the Anhui Provincial Natural Science Foundation, China (Grant No. 1208085MF114).

Corresponding Authors:  Zhen-Yu Liang     E-mail:  liangzhenyueei@163.com

Cite this article: 

Zhen-Yu Liang(梁振宇), Zheng-Dong Cheng(程正东), Yan-Yan Liu(刘严严), Kuai-Kuai Yu(于快快), Yang-Di Hu(胡洋頔) Fast Fourier single-pixel imaging based on Sierra-Lite dithering algorithm 2019 Chin. Phys. B 28 064202

[1] Pittman T B 1995 Phys. Rev. A 52 R3429
[2] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[3] Shapiro J H 2008 Phys. Rev. A 78 061802
[4] Chan W L, Charan K, Takhar D, et al. 2008 Appl. Phys. Lett. 93 S293
[5] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[6] Katkovnik V and Jaakko A 2012 J. Opt. Soc. Am. A 29 1556
[7] Sun M J, Edgar M P, Phillips D B, et al. 2016 Opt. Express 24 10476
[8] Phillips D B, Sun M J, Taylor J M, et al. 2017 Sci. Adv. 3 e1601782
[9] Sun B, Edgar M P, Bowman R, et al. 2013 Science 340 844
[10] Zhang Z B and Zhong J G 2016 Opt. Lett. 41 2497
[11] Sun M, Edgar M, Gibson G, et al. 2016 Nat. Commun. 7 12010
[12] Jin S, Hui W, Wang Y, et al. 2017 Sci. Rep. 7 45209
[13] Zhang Z, Liu S, Peng J, et al. 2018 Optica 5 315
[14] Zhang Z, Ma X and Zhong J 2015 Nat. Commun. 6 6225
[15] Bian L, Suo J, Hu X, et al. 2016 J. Opt. 18 085704
[16] Zhang Z, Wang X and Zhong J 2017 Sci. Rep. 7 12228
[17] Li S, Zhang Z, Ma X, et al. 2017 Opt. Commun. 403 257
[18] Zhang Z, Wang X, Zheng G, et al. 2017 Opt. Express 25 19619
[19] Chen H, Shi J, Liu X, et al. 2018 Opt. Commun. 413 269
[20] Huang J, Shi D, Yuan K, et al. 2018 Opt. Express 26 16547
[21] Sun M J, Huang J Y and Penuelas J 2018 Opt. Lasers Eng. 108 15
[22] Xu B, Jiang H, Zhao H, et al. 2018 Opt. Express 26 5005
[1] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[2] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[3] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[4] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[5] An apodized cubic phase mask used in a wavefront coding system to extend the depth of field
Lina Zhu(朱丽娜), Fei Li(李飞), Zeyu Huang(黄泽宇), and Tingyu Zhao(赵廷玉). Chin. Phys. B, 2022, 31(5): 054217.
[6] Deep learning facilitated whole live cell fast super-resolution imaging
Yun-Qing Tang(唐云青), Cai-Wei Zhou(周才微), Hui-Wen Hao(蒿慧文), and Yu-Jie Sun(孙育杰). Chin. Phys. B, 2022, 31(4): 048705.
[7] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[8] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[9] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[10] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[11] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[12] Single pixel imaging based on semi-continuous wavelet transform
Chao Gao(高超), Xiaoqian Wang(王晓茜), Shuang Wang(王爽), Lidan Gou(苟立丹), Yuling Feng(冯玉玲), Guangyong Jin(金光勇), and Zhihai Yao(姚治海). Chin. Phys. B, 2021, 30(7): 074201.
[13] Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking
Zhe Hu(胡哲), Wen-Qiang Hua(滑文强), and Jie Wang(王 劼). Chin. Phys. B, 2021, 30(6): 064201.
[14] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[15] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
No Suggested Reading articles found!