Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 044202    DOI: 10.1088/1674-1056/28/4/044202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhancement of spatial resolution of ghost imaging via localizing and thresholding

Yunlong Wang(王云龙), Yingnan Zhou(周英男), Shaoxiong Wang(王少雄), Feiran Wang(王斐然), Ruifeng Liu(刘瑞丰), Hong Gao(高宏), Pei Zhang(张沛), Fuli Li(李福利)
Shaanxi Provincial Key Laboratory for Quantum Information and Quantum Optoelectronic Devices, and Department of Applied Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  

In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the two light beams. Since both light beams are diffracted when passing through the optical systems, the spatial resolution of ghost imaging is in general lower than that of a corresponding conventional imaging system. When Gaussian-shaped light spots are used to illuminate an object, randomly scanning across the object plane, in the ghost imaging scheme, we show that by localizing central positions of the spots of the reference light beam, the resolution can be increased by a factor of √2 same as that of the corresponding conventional imaging system. We also find that the resolution can be further enhanced by setting an appropriate threshold to the bucket measurement of ghost imaging.

Keywords:  ghost imaging      localization      thresholding      post-selection      resolution enhancement  
Received:  07 November 2018      Revised:  30 December 2018      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
  42.40.Lx (Diffraction efficiency, resolution, and other hologram characteristics)  
  87.63.lm (Image enhancement)  
  87.57.cf (Spatial resolution)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11534008, 11605126, and 11804271), the Fund from the Ministry of Science and Technology of China (Grant No. 2016YFA0301404), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2017JQ1025), the Doctoral Fund of the Ministry of Education of China (Grant Nos. 2016M592772 and 2018M631137), and the Fundamental Research Funds for the Central Universities.

Corresponding Authors:  Ruifeng Liu, Fuli Li     E-mail:  ruifeng.liu@mail.xjtu.edu.cn;flli@mail.xjtu.edu.cn

Cite this article: 

Yunlong Wang(王云龙), Yingnan Zhou(周英男), Shaoxiong Wang(王少雄), Feiran Wang(王斐然), Ruifeng Liu(刘瑞丰), Hong Gao(高宏), Pei Zhang(张沛), Fuli Li(李福利) Enhancement of spatial resolution of ghost imaging via localizing and thresholding 2019 Chin. Phys. B 28 044202

[1] Zhang P L, Gong W L, Shen X, Huang D J and Han S S 2009 Opt. Lett. 34 1222
[2] Oh J E, Cho Y W, Scarcelli G and Kim Y H 2013 Opt. Lett. 38 682
[3] Wang Y L, Wang F R, Liu R F, Chen D X, Gao H, Zhang P and Li F L 2015 Opt. Lett. 40 5323
[4] Zhang E F, Lin H Z, Liu W T, Li Q and Chen P X 2015 Opt. Express 23 33506
[5] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 3429
[6] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[7] Valencia A and Scarcelli G and D'Angelo M and Shih Y H 2005 Phys. Rev. Lett. 94 063601
[8] Gatti A, Bache M, Magatti D, Brambilla E, Ferri F and Lugiato L A 2006 J. Mod. Opt. 53 739
[9] Liu Q, Luo K H, Chen X H and Wu L A 2010 Chin. Phys. B 19 094211
[10] Luo K H, Huang B Q, Zheng W M and Wu L A 2012 Chin. Phys. Lett. 29 074216
[11] Yang H, Wu S, Wang H B, Cao D Z, Zhang S H, Xiong J and Wang K G 2018 Phys. Rev. A 98 053853
[12] Cao D Z, Li Q C, Zhuang X C, Ren C, Zhang S H and Song X B 2018 Chin. Phys. B 27 123401
[13] Liu R F, Fang A P, Zhou Y, Zhang P, Gao S Y, Li H R, Gao H and Li F L 2016 Phys. Rev. A 93 013822
[14] Bentley S J and Boyd R W 2004 Opt. Express 12 5735
[15] Liu R F, Zhang P, Zhou Y, Gao H and Li F L 2014 Sci. Rep. 4 4068
[16] Meyers R, Deacon K S and Shih Y H 2008 Phys. Rev. A 77 041801
[17] Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R and Padgett M J 2014 Optica 1 285
[18] Pelliccia D, Rack A, Scheel M, Cantelli V and Paganin D M 2016 Phys. Rev. Lett. 117 113902
[19] Stantchev R I, Sun B Q and Hornett S M, Hobson P A, Gibson G M, Padgett M J and Hendry E 2016 Sci. Adv. 2 e1600190
[20] Rayleigh L 1879 XXXI. Investigations in optics, with special reference to the spectroscope (Taylor & Francis) pp. 261-274
[21] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A 2005 Phys. Rev. Lett. 94 183602
[22] Ferri F, Magatti D, Sala V G and Gatti A 2008 Appl. Phys. Lett. 92 261109
[23] Chen X H, Kong F H, Fu Q, Meng S Y and Wu L A 2017 Opt. Lett. 42 5290
[24] Rodríguez A D, Clemente P, Irles E, Tajahuerce E and Lancis J 2014 Opt. Lett. 39 3888
[25] Gazit S, Szameit A, Eldar Y C and Segev M 2009 Opt. Express 17 23920
[26] Shechtman Y, Gazit S, Szameit A, Eldar Y C and Segev M 2010 Opt. Lett. 35 1148
[27] Kuplicki K and Chan K W C 2016 Opt. Express 24 26766
[28] Zhang S Z, Wang W, Yu R and Yang X X 2016 Laser Phys. 26 055007
[29] Sprigg J, Peng T and Shih Y H 2016 Sci. Rep. 6 38077
[30] Yang Z, Magaña-Loaiza O S, Mirhosseini M, Zhou Y Y, Gao B S, Gao L, Rafsanjani S M H, Long G L and Boyd R W 2017 Light Sci. Appl. 6 e17013
[31] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J and Hess H F 2006 Science 313 1642
[32] Cheezum M K, Walker W F and Guilford W H 2001 Biophys. J. 81 2378
[33] Giovannetti V, Lloyd S, Maccone L, Shapiro J H 2009 Phys. Rev. A 79 013827
[34] Guerrieri F, Maccone L, Wong F N C, Shapiro J H, Tisa S and Zappa F 2010 Phys. Rev. Lett. 105 163602
[35] Mouradian S, Wong F N C and Shapiro J H 2011 Opt. Express 19 5480
[36] Goodman J W 1995 Introduction to Fourier optics (McGraw-Hill) pp. 96-125
[37] Chan K W C and O'Sullivan M N and Boyd R W 2009 Opt. Lett. 34 3343
[38] Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V and Wu L A 2010 Opt. Lett. 35 1166
[39] Meyers R E, Deacon K S and Shih Y H 2012 Appl. Phys. Lett. 100 131114
[40] Liu X F, Li M F, Yao X R, Yu W K, Zhai G J and Wu L A 2013 AIP Adv. 3 052121
[41] Chen H, Peng T and Shih Y H 2013 Phys. Rev. A 88 023808
[42] Zhao S M and Zhuang P 2014 Chin. Phys. B 23 054203
[43] Si Y, Kong L J, Li Y N, Tu C H and Wang H T 2016 Chin. Phys. Lett. 33 034203
[44] Sun B Q, Welsh S S, Edgar M P, Shapiro J H and Padgett M J 2012 Opt. Express 17 16892
[45] Mouradian S, Wong F N C and Shapiro J H 2011 Opt. Express 19 5480
[46] Thompson R E, Larson D R and Webb W W 2002 Biophys. J. 82 2775
[1] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[2] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[3] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[4] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[5] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[6] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[7] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[8] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[9] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[10] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[11] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[12] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[13] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[14] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[15] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
No Suggested Reading articles found!