Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 048101    DOI: 10.1088/1674-1056/28/4/048101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst

Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤)
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

ZnO/graphene/polyaniline (PANI) composite is synthesized and used for photoelectrocatalytic oxidation of methane under simulated sun light illumination with ambient conditions. The photoelectrochemical (PEC) performance of pure ZnO, ZnO/graphene, ZnO/PANI, and ZnO/graphene/PANI photoanodes is investigated by cyclic voltammetry (CV), chronoamerometry (J-t) and electrochemical impedance spectroscopy (EIS). The yields of methane oxidation products, mainly methanol (CH3OH) and formic acid (HCOOH), catalysed by the synthesized ZnO/graphene/PANI composite are 2.76 and 3.20 times those of pure ZnO, respectively. The mechanism of the photoelectrocatalytic process converting methane into methanol and formic acid is proposed on the basis of the experimental results. The enhanced photoelectrocatalytic activity of the ZnO/graphene/PANI composite can be attributed to the fact that graphene can efficiently transfer photo-generated electrons from the inner region to the surface reaction to form free radicals due to its superior electrical conductivity as an inter-media layer. Meanwhile, the introduction of PANI promotes solar energy harvesting by extending the visible light absorption and enhances charge separation efficiency due to its conducting polymer characteristics. In addition, the PANI can create a favorable π-conjunction structure together with graphene layers, which can achieve a more effective charge separation. This research demonstrates that the fabricated ZnO/graphene/PANI composite promises to implement the visible-light photoelectrocatalytic methane oxidation.

Keywords:  methane conversion      photoelectrocatalysis      methanol      formic acid      ZnO NWAs      polyaniline  
Received:  16 October 2018      Revised:  10 January 2019      Accepted manuscript online: 
PACS:  81.05.Dz (II-VI semiconductors)  
  81.05.Fb (Organic semiconductors)  
  81.05.ue (Graphene)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51602021 and 51474017) and the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-15-107A1).

Corresponding Authors:  Zhi-Ming Bai     E-mail:  baizhiming2008@126.com

Cite this article: 

Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤) Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst 2019 Chin. Phys. B 28 048101

[1] Crabtree R H 1995 Chem. Rev. 95 987
[2] Cao M K, Gregson K and Marshall S 1998 Atmos. Environ. 32 3293
[3] Ruppel C D 2011 Nat. Educ. Knowl. 3 29
[4] Howarth R W, Santoro R and Ingraffea A 2011 Climatic Change 106 679
[5] Hammond C, Forde M M, Rahim A, Hasbi M, Thetford A, He Q, Jenkins R L, Dimitratos N, Lopez-Sanchez J A and Dummer N F 2012 Angew. Chem. Int. Ed. 51 5129
[6] Zhang Q J, He D H and Zhu Q M 2008 J. Nat. Gas Chem. 17 24
[7] Alvarez-Galvan M C, Mota N, Ojeda M, Rojas S, Navarro R M and Fierro J L G 2011 Catal. Today 171 15
[8] Sustersic M G, Córdova O R, Triaca W E and Arvía A J 1980 J. Electrochem. Soc. 127 1242
[9] Qiao J, Tang S N, Tian Y N, Shuang S M, Dong C and Choi M M F 2009 Sens. Actuators B: Chem. 138 402
[10] Jafarian M, Mahjani M G, Heli H, Gobal F and Heydarpoor M 2003 Electrochem. Commun. 5 184
[11] Joglekar M, Nguyen V, Pylypenko S, Ngo C, Li Q, O'Reilly M E, Gray T S, Hubbard W A, Gunnoe T B, Herring A M and Trewyn B G 2016 J. Am. Chem. Soc. 138 116
[12] Dong F, Ou M Y, Jiang Y K, Guo S and Wu Z B 2014 Ind. & Eng. Chem. Res. 53 2318
[13] Nischk M, Mazierski P, Gazda M and Zaleska A 2014 Appl. Catal. B: Environ. 144 674
[14] Naldoni A, Bianchi C L, Pirola C and Suslick K S 2013 Ultrason. Sonochem. 20 445
[15] Hameed A, Ismail I M I, Aslam M and Gondal M A 2014 Appl. Catal. A: Gen. 470 327
[16] Gondal M A, Hameed A and Suwaiyan A 2003 Appl. Catal. A: Gen. 243 165
[17] Gondal M A, Hameed A, Yamani Z H and Arfaj A 2004 Chem. Phys. Lett. 392 372
[18] Chen X X, Li Y P, Pan X Y, Cortie D, Huang X T and Yi Z G 2016 Nat Commun. 7 12273
[19] Hu Y, Nagai Y, Rahmawaty D, Wei C H and Anpo M 2008 Catal. Lett. 124 80
[20] Wahl A, Ulmann M, Carroy A, Jermann B, Dolata M, Kedzierzawski P, Chatelain C, Monnier A and Augustynski J 1995 J. Electroanal. Chem. 396 41
[21] Georgieva J, Valova E, Armyanov S, Philippidis N, Poulios I and Sotiropoulos S 2012 J. Hazard. Mater. 211-212 30
[22] Fraga L E, Anderson M A, Beatriz M L P M A, Paschoal F M M, Romão L P and Zanoni M V B 2009 Electrochim. Acta 54 2069
[23] Orak I, Kocyigit A and Alindal S 2017 Chin. Phys. B 26 028102
[24] Yang T Y, Kong C Y, Ruan H B, Qin G P, Li W J, Liang W W, Meng X D, Zhao Y H, Fang L and Cui Y T 2012 Acta Phys. Sin. 61 168101 (in Chinese)
[25] Jin Y P, Zhang B, Wang J Z and Shi L Q 2016 Chin. Phys. Lett. 33 058101
[26] Yang X Y, Cheng J Y, Li B, Cao W Q, Yuan J, Zhang D Q and Cao M S 2012 Chin. Phys. Lett. 29 108101
[27] Wang Y J, Shi R, Lin J and Zhu Y F 2011 Energy & Environ. Sci. 4 2922
[28] Bai X J, Wang L, Zong R L, Lv Y H, Sun Y Q and Zhu Y F 2013 Langmuir Acs J. Surf. & Colloids 29 3097
[29] Wu Y N, Wu D C, Dong C J, Zhang P P, Ji H X and He L 2011 Acta Phys. Sin. 60 77505 (in Chinese)
[30] Zhong W W, L F M, Cai L G, Ding P, Liu X Q and Li Y 2011 Acta Phys. Sin. 60 118102 (in Chinese)
[31] Wu Z H and Duan W Q 2012 Acta Phys. Sin. 61 137502 (in Chinese)
[32] Chen H M, Chen C K, Chang Y C, Tsai C W, Liu R S, Hu S F, Chang W S and Chen K H 2010 Angew. Chem. 122 6102
[33] Wang G, Yang X, Qian F, Zhang J Z and Li Y 2010 Nano Lett. 10 1088
[34] Shao M F, Ning F Y, Wei M, Evans D G and Xue D 2014 Adv. Funct. Mater. 24 580
[35] Singh N S, Kumar L, Kumar A, Vaisakh S, Singh S D, Sisodiya K, Srivastava S, Kansal M, Rawat S, Singh T A, Tanya and Anita 2017 Mater. Sci. Semicond. Process. 60 29
[36] Bai Z M, Yan X Q, Kang Z, Hu Y P, Zhang X H and Zhang Y 2015 Nano Energy 14 392
[37] Xu T G, Zhang L W, Cheng H Y and Zhu Y F 2011 Appl. Catal. B Environ. 101 382
[38] Fu C, He D W, Wang Y S, Fu M, Geng X and Zhuo Z L 2015 Chin. Phys. B 24 87801
[39] Zhang L L, Huang D, Hu N T, Yang C, Li M, Wei H, Yang Z, Su Y J and Zhang Y F 2017 J. Power Sources 342 1
[40] Fan S N, Liu R W, Ma R S, Yu S S, Li M, Zheng W T and Hu S X 2017 Chin. Phys. B 26 048102
[41] Nsib M F, Saafi S, Rayes A, Moussa N and Houas A 2016 J. Energy Inst. 89 694
[42] Anjum M, Oves M, Kumar R and Barakat M A 2017 Int. Biodeterioration & Biodegradation 119 66
[43] Li Z H, Feng S L, Liu S Y, Li X, Wang L and Lu W Q 2015 Nanoscale 7 19178
[44] Weng B, Yang M Q, Zhang N and Xu Y J 2014 J. Mater. Chem. A 2 9380
[45] Jing L, Yang Z Y, Zhao Y F, Zhang Y X, Guo X, Yan Y M and Sun K N 2014 J. Mater. Chem. A 2 1068
[46] Singh J, Bhondekar A P, Singla M L and Sharma A 2013 ACS Appl. Mater. & Interfaces 5 5346
[47] Gasteiger H A, Markovic N, Jr P N R and Cairns E J 1994 J. Phys. Chem. 9746 326
[48] Hahn F and Melendres C A 2001 Electrochim. Acta 46 3525
[49] Sustersic M G 1980 J. Electrochem. Soc. 127 1242
[50] Koppenol W H and Liebman J F 1984 J. Phys. Chem. 88 99
[51] Chen X X, Huang X T and Yi Z G 2014 Chemistry 20 17590
[52] Wood P M 1988 Biochem. J. 253 287
[53] Xu C W, Cheng L Q, Shen P K and Liu Y L 2007 Electrochem. Commun. 9 997
[54] Chen S, Zhu J W and Wang X 2010 J. Phys. Chem. C 114 11829
[55] Sawangphruk M and Kaewsongpol T 2012 Mater. Lett. 87 142
[56] Tang Y H, Wu N, Luo S L, Liu C B, Wang K and Chen L Y 2012 Macromol. Rapid Commun. 33 1780
[57] Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Norskov J K and Jaramillo T F 2017 Science 355 eaad4998
[58] Wang Z Q, Liu Z A, Du G, Asiri A M, Wang L, Li X N, Wang H J, Sun X P, Chen L and Zhang Q J 2018 Chem. Commun. 54 7
[59] Zhang H B, Yu L, Chen T, Zhou W and Lou X W 2018 Adv. Funct. Mater. 201807086
[60] Yuliati L and Yoshida H 2008 Chem. Soc. Rev. 37 1592
[61] Taylor C and Noceti R 2000 Catal. Today 55 259
[1] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[2] A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明). Chin. Phys. B, 2021, 30(5): 056102.
[3] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[4] Two-dimensional polyaniline nanosheets via liquid-phase exfoliation
Su-Na Fan(范苏娜), Ren-Wei Liu(刘仁威), Rui-Song Ma(马瑞松), Shan-Sheng Yu(于陕升), Ming Li(李明), Wei-Tao Zheng(郑伟涛), Shu-Xin Hu(胡书新). Chin. Phys. B, 2017, 26(4): 048102.
[5] Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells
Tong-Fang Liu(刘统方), Yu-Feng Hu(胡煜峰), Zhen-Bo Deng(邓振波), Xiong Li(李熊), Li-Jie Zhu(朱丽杰), Yue Wang(王越), Long-Feng Lv(吕龙锋), Tie-Ning Wang(王铁宁), Zhi-Dong Lou(娄志东), Yan-Bing Hou(侯延冰), Feng Teng(滕枫). Chin. Phys. B, 2016, 25(8): 088801.
[6] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles
Fu Chen (付晨), He Da-Wei (何大伟), WangYong-Sheng (王永生), Fu Ming (富鸣), Geng Xin (耿欣), Zhuo Zu-Liang (卓祖亮). Chin. Phys. B, 2015, 24(8): 087801.
[7] Synthesis of graphene-supported monodisperse AuPd bimetallic nanoparticles for electrochemical oxidation of methanol
Xiao Hong-Jun (肖红君), Shen Cheng-Min (申承民), Shi Xue-Zhao (时雪钊), Yang Su-Dong (杨苏东), Tian Yuan (田园), Lin Shao-Xiong (林少雄), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2015, 24(7): 078109.
[8] Synthesis and electrochemical properties of three-dimensional graphene/polyaniline composites for supercapacitor electrode materials
Zhao Wen (赵文), He Da-Wei (何大伟), Wang Yong-Sheng (王永生), Du Xiang (杜翔), Xin Hao (忻昊). Chin. Phys. B, 2015, 24(4): 047204.
[9] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles
Geng Xin (耿欣), He Da-Wei (何大伟), Wang Yong-Sheng (王永生), Zhao Wen (赵文), Zhou Yi-Kang (周亦康), Li Shu-Lei (李树磊). Chin. Phys. B, 2015, 24(2): 027803.
[10] Orange dye–polyaniline composite based impedance humidity sensors
Muhammad Tariq Saeed Chani, Kh. S. Karimov, F. A. Khalid, S. Z. Abbas, M. B. Bhatty. Chin. Phys. B, 2013, 22(1): 010701.
[11] Investigation of ageing effects on the electrical properties of polyaniline/silver nanocomposites
Asma Binat Afzal and Muhammad Javed Akhtar. Chin. Phys. B, 2011, 20(5): 058102.
[12] Effect of displacement on resistance and capacitance of polyaniline film
Khasan Sanginovich Karimov, Muhammad Tariq Saeed, Fazal Ahmad Khalid, and Syed Abdul Moiz . Chin. Phys. B, 2011, 20(4): 040601.
[13] Electrical resistance response of polyaniline films to water, ethanol, and nitric acid solution
Yin Hong-Xing(尹红星), Li Meng-Meng(李蒙蒙), Yang He(杨贺), Long Yun-Ze(龙云泽), and Sun Xin(孙欣). Chin. Phys. B, 2010, 19(8): 088105.
[14] Synthesis of monodisperse palladium nanocubes and their catalytic activity for methanol electrooxidation
Ding Hao(丁皓), Shi Xue-Zhao(时雪钊), Shen Cheng-Min(申承民), Hui Chao(惠超), Xu Zhi-Chuan(徐梽川), Li Chen(李晨), Tian Yuan(田园), Wang Deng-Ke(王登科), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2010, 19(10): 106104.
[15] Rectifying effect of heterojunction fabricated in freestanding thin film of polyaniline containing azobenzene side-chain
Yin Zhi-Hua(尹志华), Long Yun-Ze(龙云泽), Huang Kun(黄琨), Wan Mei-Xiang(万梅香), and Chen Zhao-Jia(陈兆甲). Chin. Phys. B, 2009, 18(1): 298-302.
No Suggested Reading articles found!