Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 036802    DOI: 10.1088/1674-1056/28/3/036802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Controllable fabrication of self-organized nano-multilayers in copper-carbon films

Wei-Qi Wang(王伟奇)1,2, Li Ji(吉利)2, Hong-Xuan Li(李红轩)2, Xiao-Hong Liu(刘晓红)2, Hui-Di Zhou(周惠娣)2, Jian-Min Chen(陈建敏)2
1 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
2 University of Chinese Academy of Sciences, Beijing 100081, China
Abstract  

In order to clarify the influence of methane concentration and deposition time on self-organized nano-multilayers, three serial copper-carbon films have been prepared at various methane concentrations with different deposition times using a facile magnetron sputtering deposition system. The ratios of methane concentration (CH4/Ar+CH4) used in the experiments are 20%, 40%, and 60%, and the deposition times are 5 minutes, 20 minutes, and 40 minutes, respectively. Despite the difference in the growth conditions, self-organizing multilayered copper-carbon films are prepared at different deposition times by changing methane concentration. The film composition and microstructure are investigated by x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). By comparing the composition and microstructure of three serial films, the optimal growth conditions and compositions for self-organizing nano-multilayers in copper-carbon film are acquired. The results demonstrate that the self-organized nano-multilayered structure prefers to form in two conditions during the deposition process. One is that the methane should be curbed at low concentration for long deposition time, and the other condition is that the methane should be controlled at high concentration for short deposition time. In particular, nano-multilayered structure is self-organized in the copper-carbon film with copper concentration of 10-25 at.%. Furthermore, an interesting microstructure transition phenomenon is observed in copper-carbon films, that is, the nano-multilayered structure is gradually replaced by a nano-composite structure with deposition time and finally covered by amorphous carbon.

Keywords:  nano-multilayers      self-organized      controllable fabrication      copper-carbon films  
Received:  19 December 2018      Revised:  16 January 2019      Accepted manuscript online: 
PACS:  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.55.-a (Thin film structure and morphology)  
  81.05.uj (Diamond/nanocarbon composites)  
  81.15.Cd (Deposition by sputtering)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51472250, U1637204, and 51775537).

Corresponding Authors:  Li Ji, Hong-Xuan Li     E-mail:  jili@licp.cas.cn;lihx@licp.cas.cn

Cite this article: 

Wei-Qi Wang(王伟奇), Li Ji(吉利), Hong-Xuan Li(李红轩), Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), Jian-Min Chen(陈建敏) Controllable fabrication of self-organized nano-multilayers in copper-carbon films 2019 Chin. Phys. B 28 036802

[1] Stueber M, Holleck H, Leiste H, Seemann K, Ulrich S and Ziebert C 2009 J. Alloys Compd. 483 321
[2] Li F, Zhang S, Kong J, Zhang Y and Zhang W 2011 Thin Solid Films 519 4910
[3] Ali E and Christophe D 2006 J. Phys. D: Appl. Phys. 39 R311
[4] Luengo G, Campbell S E, Srdanov V I, Wudl F and Israelachvili J N 1997 Chem. Mater. 9 1166
[5] Golan Y, Drummond C, Homyonfer M, Feldman Y, Tenne R and Israelachvili J 1999 Adv. Materials 11 934
[6] Strondl C, Carvalho N M, De Hosson J T M and van der Kolk G J 2003 Surf. Coat. Technol. 162 288
[7] Wu Y, Li H, Ji L, Ye Y, Chen J and Zhou H 2013 Surf. Coat. Technol. 236 438
[8] Wu W Y and Ting J M 2006 Carbon 44 1210
[9] Gerhards I, Stillrich H, Ronning C, Hofsäss H and Seibt M 2004 Phys. Rev. B 70 245418
[10] Corbella C, Echebarria B, Ramírez-Piscina L, Pascual E, Andújar J L and Bertran E 2005 Appl. Phys. Lett. 87 213117
[11] Wu W Y and Ting J M 2004 Chem. Phys. Lett. 388 312
[12] Hovsepian P E, Kok Y N, Ehiasarian A P, Haasch R, Wen J G and Petrov I 2005 Surf. Coat. Technol. 200 1572
[13] Chen C Q, Pei Y T, Shaha K P and De Hosson J T M 2010 Appl. Phys. Lett. 96 073103
[14] Jao J Y, Han S, Chang L S, Chang C L, Liu Y C and Shih H C 2010 Appl. Surf. Sci. 256 7490
[15] Wang J, Pu J, Zhang G and Wang L 2013 ACS Applied Materials & Interfaces 5 5015
[16] Wu W Y, Ting J M, Zutz H, Lyzwa D, Gerhards I, Ronning C and Hofsäss H 2008 Diamond Relat. Mater. 17 1494
[17] Dreesen L, Cecchet F and Lucas S 2009 Plasma Processes Polym. 6 S849
[18] Yu X, Ma J, Ji F, Wang Y, Cheng C and Ma H 2005 Appl. Surf. Sci. 245 310
[19] Wang W, Ji L, Li H, Zhou H and Chen J 2017 J. Alloys Compd. 722 242
[20] Deambrosis S M, Miorin E, Montagner F, Zin V, Fabrizio M, Sebastiani M, Massimi F and Bemporad E 2015 Surf. Coat. Technol. 266 14
[21] Wu Z, Tian X, Gui G, Gong C, Yang S and Chu P K 2013 Appl. Surf. Sci. 276 31
[22] Sproul W D, Christie D J and Carter D C 2005 Thin Solid Films 491 1
[23] Čermák J, Yamada T, Ganzerová K and Rezek B 2016 Adv. Mater. Interfaces 3 16
[24] Dai W, Wang A and Wang Q 2015 Surf. Coat. Technol. 272 33
[25] Dwivedi N, Kumar S, Dayal S, Rauthan C and Panwar O 2011 J. Alloys Compd. 509 1285
[26] Liu A P, Liu M, Yu J C, Qian G D and Tang W H 2015 Chin. Phys. B 24 056804
[27] Ren Y, Wang J B, Liu Q F, Han X H and Xue D S 2009 Chin. Phys. B 18 3573
[28] Chen C Y and Hsu C Y 2005 Microwave Opt. Technol. Lett. 47 261
[29] Khorshidifard M, Rudbari H A, Kazemi-Delikani Z, Mirkhani V and Azadbakht R 2015 J. Mol. Struct. 1081 494
[30] Onoprienko A A and Danylenko M I 2012 Surf. Coat. Technol. 206 3450
[1] Quasi-periodic events on structured earthquake models
Bin-Quan Li(李斌全), Zhi-Xi Wu(吴枝喜), Sheng-Jun Wang(王圣军). Chin. Phys. B, 2019, 28(9): 090503.
[2] Plasticity-induced characteristic changes of pattern dynamics and the related phase transitions in small-world neuronal networks
Huang Xu-Hui (黄旭辉), Hu Gang (胡岗). Chin. Phys. B, 2014, 23(10): 108703.
[3] Bursty events and incremental diffusion in a local diffusion and multi-scale convection system
Xu Guo-Sheng (徐国盛), Wan Bao-Nian (万宝年), Song Mei (宋梅). Chin. Phys. B, 2003, 12(2): 189-197.
[4] EARTHQUAKE SCALING PARADOX
Wu Zhong-liang (吴忠良). Chin. Phys. B, 2001, 10(5): 395-397.
[5] SELF-ORGANIZED CRITICALITY IN ONE-DIMENSIONAL PACKET FLOW MODEL
Yuan Jian (袁坚), Ren Yong (任勇), Shan Xiu-ming (山秀明). Chin. Phys. B, 2000, 9(9): 641-648.
No Suggested Reading articles found!