Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 027302    DOI: 10.1088/1674-1056/28/2/027302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical analytic model for RESURF AlGaN/GaN HEMTs

Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂)
Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China
Abstract  In this paper, we propose a two-dimensional (2D) analytic model for the channel potential and electric field distribution of the RESURF AlGaN/GaN high electron mobility transistors (HEMTs). The model is constructed by two-dimensional Poisson's equation with appropriate boundary conditions. In the RESURF AlGaN/GaN HEMTs, we utilize the RESURF effect generated by doped negative charge in the AlGaN layer and introduce new electric field peaks in the device channels, thus, homogenizing the distribution of electric field in channel and improving the breakdown voltage of the device. In order to reveal the influence of doped negative charge on the electric field distribution, we demonstrate in detail the influences of the charge doping density and doping position on the potential and electric field distribution of the RESURF AlGaN/GaN HEMTs with double low density drain (LDD). The validity of the model is verified by comparing the results obtained from the analytical model with the simulation results from the ISE software. This analysis method gives a physical insight into the mechanism of the AlGaN/GaN HEMTs and provides reference to modeling other AlGaN/GaN HEMTs device.
Keywords:  RESURF AlGaN/GaN HEMTs      two-dimensional analytic model      potential distribution      electric field distribution  
Received:  26 October 2018      Revised:  03 December 2018      Published:  05 February 2019
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2015CB351906), the National Natural Science Foundation of China (Grant No. 61774114), the Key Program of the National Natural Science Foundation of China (Grant No. 61334002), and the 111 Project, China (Grant No. B12026).
Corresponding Authors:  Hao Wu, Bao-Xing Duan     E-mail:  haowu1701@163.com;bxduan@163.com

Cite this article: 

Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂) Theoretical analytic model for RESURF AlGaN/GaN HEMTs 2019 Chin. Phys. B 28 027302

[1] Cai Y, Zhou Y, Chen K J and Lau K M 2005 IEEE Electron. Dev. Lett. 26 435
[2] Saito W, Takada Y, Kuraguchi M, Tsuda. K, Omura I, Ogura T and Ohashi H 2003 IEEE Trans. Electron. Dev. 50 2528
[3] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J and EastmanFoutz L F 2000 J. Appl. Phys. 87 334
[4] Ambacher O, Dimitrov R, Stutzmann M, Foutz B E, Murphy M J, Smart J A, Shealy J R, Weimann N G, Chu K, Chumbes M, Green B, Sierakowski A J, Schaff W J and Eastman L F 1999 Phys. Status Solidi 216 381
[5] Asbeck P M, Yu E T and Lau S S 1997 Electron. Lett. 33 1230
[6] Ludikhuize A W 2002 12th Int. Symp. Power Semicond. Dev. & Ics. Proc., 22-25 May, 2000, Toulouse, France, p. 11
[7] Duan B X and Yang Y T 2012 Sci. China: Inform. Sci. 42 770
[8] Zhao Z, Luo Q and Du J 2013 Electron. Lett. 49 1638
[9] Mao W, She W B, Yang C, Zhang C, Zhang J C, Ma X H , Zhang J F, Liu H X, Yang L A, Zhang K, Zhao S L, Chen Y H, Zheng X F and Hao Y 2014 Chin. Phys. B 23 087305
[10] Kumar S P, Agrawal A, Chaujar R, Gupta M and Gupta R S 2008 Superlattices & Microstruct. 44 37
[11] Duan B X, Yang Y and Zhang B 2010 Solid State Electron. 54 685
[12] Ahmed T, Khan M T A, Islam M S 2012 International Conference on Devices, Circuits and Systems (ICDCS), March 15-16, Coimbatore, India, p. 226
[1] Twin boundary dominated electric field distribution in CdZnTe detectors
Jiangpeng Dong(董江鹏), Wanqi Jie(介万奇), Jingyi Yu(余竞一), Rongrong Guo(郭榕榕), Christian Teichert, Kevin-P Gradwohl, Bin-Bin Zhang(张滨滨), Xiangxiang Luo(罗翔祥), Shouzhi Xi(席守智), Yadong Xu(徐亚东). Chin. Phys. B, 2018, 27(11): 117202.
[2] A theoretical exploration of the influencing factors for surface potential
Liu Xin-Min, Yang Gang, Li Hang, Tian Rui, Li Rui, Ding Wu-Quan, Yuan Ruo. Chin. Phys. B, 2015, 24(6): 068202.
[3] Influence of the channel electric field distribution on the polarization Coulomb field scattering in In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors
Yu Ying-Xia, Lin Zhao-Jun, Luan Chong-Biao, Lü Yuan-Jie, Feng Zhi-Hong, Yang Ming, Wang Yu-Tang. Chin. Phys. B, 2014, 23(4): 047201.
[4] Electric field distribution around the chain of composite nanoparticles in ferrofluids
Fan Chun-Zhen, Wang Jun-Qiao, Cheng Yong-Guang, Ding Pei, Liang Er-Jun, Huang Ji-Ping. Chin. Phys. B, 2013, 22(8): 084703.
[5] Fabrication and characterization of V-gate AlGaN/GaN high electron mobility transistors
Zhang Kai, Cao Meng-Yi, Chen Yong-He, Yang Li-Yuan, Wang Chong, Ma Xiao-Hua, Hao Yue. Chin. Phys. B, 2013, 22(5): 057304.
[6] Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen–nitrogen mixtures
Sima Wen-Xia, Peng Qing-Jun, Yang Qing, Yuan Tao, Shi Jian. Chin. Phys. B, 2013, 22(1): 015203.
[7] Electric field distribution and effective nonlinear AC and DC responses of graded cylindrical composites
Ding Xia,Jia Yan-Xia,Wei En-Bo. Chin. Phys. B, 2012, 21(5): 057202.
[8] Electric potential distribution near nanocone arrays on metal substrates
Huang Xiao-Jing,You Rong-Yi. Chin. Phys. B, 2012, 21(5): 057802.
[9] Charge transfer and variation of potential distributions in the formation of 4, 4'-bipyridine molecular junction
Li Zong-Liang, Zou Bin, Yan Xun-Wang, Wang Chuan-Kui. Chin. Phys. B, 2007, 16(5): 1434-1439.
No Suggested Reading articles found!