Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118104    DOI: 10.1088/1674-1056/27/11/118104
RAPID COMMUNICATION Prev   Next  

Formation and stability of ultrasonic generated bulk nanobubbles

Chen-Ran Mo(莫宸冉)1,2, Jing Wang(王菁)1,2,4, Zhou Fang(方舟)1,2, Li-Min Zhou(周利民)1,2, Li-Juan Zhang(张立娟)1,3, Jun Hu(胡钧)1,3
1 Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China;
4 School of Physical Science and Technology, Shanghai Tech University, Shanghai 201204, China
Abstract  

Although various and unique properties of bulk nanobubbles have drawn researchers' attention over the last few years, their formation and stabilization mechanism has remained unsolved. In this paper, we use ultrasonic methods to produce bulk nanobubbles in the pure water and give a comprehensive study on the bulk nanobubbles properties and generation. The ultrasonic wave gives rise to constant oscillation in water where positive and negative pressure appears alternately. With the induced cavitation and presence of dissolved air, the bulk nanobubbles formed. “Nanosight” (which is a special instrument that combines dynamic light scattering with nanoparticle tracking analysis) was used to analyze the track and concentration of nanobubbles. Our results show that in our experiment, sufficient bulk nanobubbles were generated and we have proven they are not contaminations. We also found nanobubbles in the ultrasonic water change in both size and concentration with ultrasonic time.

Keywords:  bulk nanobubble      ultrasonic      nanoparticle tracking analysis      dissolved oxygen  
Received:  01 August 2018      Revised:  03 September 2018      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  64.75.Bc (Solubility)  
  68.03.-g (Gas-liquid and vacuum-liquid interfaces)  
Corresponding Authors:  Li-Juan Zhang, Li-Juan Zhang     E-mail:  zhanglijuan@sinap.ac.cn;hujun@sinap.ac.cn

Cite this article: 

Chen-Ran Mo(莫宸冉), Jing Wang(王菁), Zhou Fang(方舟), Li-Min Zhou(周利民), Li-Juan Zhang(张立娟), Jun Hu(胡钧) Formation and stability of ultrasonic generated bulk nanobubbles 2018 Chin. Phys. B 27 118104

[1] Johnson B D and Cooke R C 1981 Science 213 209
[2] Bunkin N F, Kochergin A V, Lobeyev A V, Ninham B W and Vinogradova O I 1996 Colloids & Surfaces A PhysicoChem. & Eng. Aspects 110 207
[3] Bunkin N F, Lobeyev A V, Lyakhov G A and Ninham B W 1999 Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics 60 1681
[4] Kim J Y, Song M G and Kim J D 2000 J. Colloid & Interface Sci. 223 285
[5] Jin F, Li J, Ye X and Wu C 2007 J. Phys. Chem. B 111 11745
[6] Häbich A, Ducker W, Dunstan D E and Zhang X 2010 J. Phys. Chem. B 114 6962
[7] Kikuchi K, Takeda H, Rabolt B, Okaya T, Ogumi Z, Saihara Y and Noguchi H 2001 J. Electroanalytical Chem. 506 22
[8] Ishida N, Inoue T, Minoru Miyahara A and Higashitani K 2000 Langmuir 16 6377
[9] Lou S T, Ouyang Z Q, Zhang Y and Li X J 2000 J. Vac. Sci. & Technol. B Microelectronics & Nanometer Struct. 18 2573
[10] Ljunggren S and Eriksson J C 1997 Colloids & Surfaces A PhysicoChem. & Engineering Aspects 129 151
[11] Maeda S International Conference on Optical Particle Characterization p. 92320S
[12] Bunkin N F, Shkirin A V, Ignatiev P S, Chaikov L L, Burkhanov I S and Starosvetskij A V 2012 J. Chem. Phys. 137 054706
[13] Li H, Hu L, Song D and Lin F 2014 Water Environment Res. 86 844
[14] Agarwal A, Ng W J and Liu Y 2011 Chemosphere 84 1175
[15] Calgaroto S, Wilberg K Q and Rubio J 2014 Minerals Eng. 60 33
[16] Ngai T, Xing X and Jin F 2008 Langmuir ACS J. Surfaces & Colloids 24 13912
[17] Zhu J, An H, Alheshibri M, Liu L, Terpstra P M J, Liu G and Craig V S J 2016 Langmuir 32 11203
[18] Oeffinger B E and Wheatley M A 2004 Ultrasonics 42 343
[19] Kalmes A A, Ghosh S and Watson R L 2013 J. Am. College Cardiology 61 E106
[20] Mondal S, Martinson J A, Ghosh S, Watson R and Pahan K 2012 Plos One 7 e51869
[21] Choi, James C, Tony L, Sean, Anthony B, Watson and Richard L 2012 BioPhysical Journal 102 683a
[22] Ghosh S, Mega T L, German S, Burke L M, Diegel M L, Wood A B and Watson R L 2011 J. Allergy & Clinical Immunology 127 AB84
[23] Zhang X H, Maeda N and Craig V S 2006 Langmuir 22 5025
[24] Qiu J, Zou Z, Wang S, Wang X, Wang L, Dong Y, Zhao H, Zhang L and Hu J 2017 Chemphyschem 18 1345
[25] Guan M, Guo W, Gao L, Tang Y, Hu J and Dong Y 2012 Chemphyschem 13 2115
[26] Zhang X H, Li G, Wu Z H, Zhang X D and Hu J 2005 Chin. Phys. 14 1774
[27] Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H and Hu J 2006 Langmuir ACS J. Surfaces & Colloids 22 8109
[28] Zhou L M, Wang S, Qiu J, Wang L, Wang X Y, Li B, Zhang L and Hu J 2017 Chin. Phys. B 26 106803
[29] Barnett S 1998 Ultrasound Medicine & Biol. 24 S11
[30] , L H T and Doraiswamy L K 1999 Ind. Eng. Chem. Res. 38 1215
[31] Mason and Timothy 1988 Sonochemistry:Theory, Applications and Uses of Ultrasound in Chemistry (Ellis Horwood)
[32] Sette D and Wanderlingh F 1962 Phys. Rev. 125 409
[33] Cho S H, Kim J Y, Chun J H and Kim J D 2005 Colloids & Surfaces A PhysicoChem. & Eng. Aspects 269 28
[34] Koishi T, Yoo S, Yasuoka K, Zeng X C, Narumi T, Susukita R, Kawai A, Furusawa H, Suenaga A and Okimoto N 2004 Phys. Rev. Lett. 93 185701
[35] Li Z, Zhang X, Zhang L, Zeng X, Hu J and Fang H 2007 J. Phys. Chem. B 111 9325
[36] Zhang L J, Chen H, Li Z X, Fang H P and Hu J 2008 Sci. Chin. 51 219
[1] Nonlinear inversion of ultrasonic guided waves for in vivo evaluation of cortical bone properties
Xiaojun Song(宋小军), Tiandi Fan(樊天地), Jundong Zeng(曾俊冬), Qin-Zhen Shi(石勤振), Qiong Huang(黄琼), Meilin Gu(顾美琳), Petro Moilanen, Yi-Fang Li(李义方), and Dean Ta(他得安). Chin. Phys. B, 2022, 31(7): 074301.
[2] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[3] Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
Qiang Tang(汤强), Pengzhan Liu(刘鹏展), and Shuai Tang(唐帅). Chin. Phys. B, 2022, 31(4): 044301.
[4] Amplitude modulation excitation for cancellous bone evaluation using a portable ultrasonic backscatter instrumentation
Boyi Li(李博艺), Chengcheng Liu(刘成成), Xin Liu(刘欣), Tho N. H. T. Tran, Ying Li(李颖), Dan Li(李旦), Dongsheng Bi(毕东生), Duwei Liu(刘度为), and Dean Ta(他得安). Chin. Phys. B, 2022, 31(11): 114303.
[5] Assessment of cortical bone fatigue using coded nonlinear ultrasound
Duwei Liu(刘度为), Boyi Li(李博艺), Dongsheng Bi(毕东生), Tho N. H. T. Tran, Yifang Li(李义方), Dan Liu(刘丹), Ying Li(李颖), and Dean Ta(他得安). Chin. Phys. B, 2021, 30(9): 094301.
[6] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[7] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[8] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[9] Ultrasonic backscatter characterization of cancellous bone using a general Nakagami statistical model
Chengcheng Liu(刘成成), Rui Dong(东蕊), Boyi Li(李博艺), Ying Li(李颖), Feng Xu(徐峰), Dean Ta(他得安), Weiqi Wang(王威琪). Chin. Phys. B, 2019, 28(2): 024302.
[10] Simulation of acoustic fields emitted by ultrasonic phased array in austenitic steel weld
Zhong-Cun Guo(郭忠存), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2019, 28(11): 114302.
[11] Generation of narrowband Lamb waves based on the Michelson interference technique
Tian-Ming Ye(叶天明), Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥). Chin. Phys. B, 2018, 27(5): 054301.
[12] Ultrasound wave propagation in glass-bead packing under isotropic compression and uniaxial shear
Zhi-Gang Zhou(周志刚), Yi-Min Jiang(蒋亦民), Mei-Ying Hou(厚美瑛). Chin. Phys. B, 2017, 26(8): 084502.
[13] Review on second-harmonic generation of ultrasonic guided waves in solid media (I):Theoretical analyses
Wei-Bin Li(李卫彬), Ming-Xi Deng(邓明晰), Yan-Xun Xiang(项延训). Chin. Phys. B, 2017, 26(11): 114302.
[14] Experimental and numerical studies of nonlinear ultrasonic responses on plastic deformation in weld joints
Yan-Xun Xiang(项延训), Wu-Jun Zhu(朱武军), Ming-Xi Deng(邓明晰), Fu-Zhen Xuan(轩福贞). Chin. Phys. B, 2016, 25(2): 024303.
[15] Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers
Ming-Liang Li(李明亮), Ming-Xi Deng(邓明晰), Guang-Jian Gao(高广健). Chin. Phys. B, 2016, 25(12): 124301.
No Suggested Reading articles found!