Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 113201    DOI: 10.1088/1674-1056/27/11/113201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Low-order harmonic generation of hydrogen molecular ion in laser field studied by the two-state model

Ling-Ling Du(杜玲玲), Guo-Li Wang(王国利), Peng-Cheng Li(李鹏程), Xiao-Xin Zhou(周效信)
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  

The low-order harmonic generation of hydrogen molecular ion interacting with a linearly polarized laser field has been investigated theoretically by using a simple two-state model. The validity of the two-state model is carefully examined by comparing the harmonic spectra of hydrogen molecular ion obtained from this model with those from the three-dimensional time-dependent Schrödinger equation. When combined with the Morlet transform of quantum time-frequency spectrum, the two-state model can be used to study the dynamical origin of the low-order harmonic generation of hydrogen molecular ion driven by low-frequency pulses. In addition, some interesting structures of the time profiles for low order harmonics are obtained.

Keywords:  low-order harmonic generation      hydrogen molecule ion      two-state model  
Received:  18 July 2018      Revised:  27 August 2018      Accepted manuscript online: 
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.65.-k (Nonlinear optics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11465016, 11674268, and 11764038).

Corresponding Authors:  Ling-Ling Du, Xiao-Xin Zhou     E-mail:  dull2014@163.com;zhouxx@nwnu.edu.cn

Cite this article: 

Ling-Ling Du(杜玲玲), Guo-Li Wang(王国利), Peng-Cheng Li(李鹏程), Xiao-Xin Zhou(周效信) Low-order harmonic generation of hydrogen molecular ion in laser field studied by the two-state model 2018 Chin. Phys. B 27 113201

[1] Zhai Z, Zhu Q, Chen J, Yan Z C, Fu P and Wang B 2011 Phys. Rev. A 83 043409
[2] Wang G L, Jin C, Le A T and Lin C D 2012 Phys. Rev. A 86 015401
[3] Wang L, Wang G L, Jiao Z H, Zhao S F and Zhou X X 2018 Chin. Phys. B 27 073205
[4] Du L L, Li P C and Zhou X X 2017 Phys. Lett. A 381 2521
[5] Jin C and Lin C D 2012 Phys. Rev. A 85 033423
[6] Ciappina M F, Pérez-Hernández J A, LandsmanA S, Okell W A, Zherebtsov S, Förg B, Schötz J, Seiffert L, Fennel T, Shaaran T, Zimmermann T, Chacón A, Guichard R, Zaïr A, Tisch J W G, Marangos J P, Witting T, Braun A, Maier S A, Roso L, Krüger M, Hommelhoff P, Kling M F, Krausz F and Lewenstein M 2017 Rep. Prog. Phys. 80 054401
[7] Feng L Q 2015 Phys. Rev. A 92 053832
[8] Jiang S C, Chen J G, Wei H, Yu C, Lu R F and Lin C D 2018 Phys. Rev. Lett. 120 253201
[9] Wu J S, Jia Z M and Zeng Z N 2017 Chin. Phys. B 26 093201
[10] Pan Y, Zhao S F and Zhou X X 2013 Phys. Rev. A 87 035805
[11] Zhong H Y, Guo J, Zhang H D, Du H and Liu X S 2015 Chin. Phys. B 24 073202
[12] Wu J S, Jia Z M and Zeng Z N 2017 Chin. Phys. B 26 093201
[13] Guo Q L, Li P C, Zhou X X and Chu S I 2018 Opt. Commun. 410 262
[14] Power E P, March A M, Catoire F, Sistrunk E, Krushelnick K, Agostini P and DiMauro L F 2010 Nat. Photon. 4 352
[15] Yost D C, Schibli T R, Ye J, Tate J L, Hostetter J, Gaarde M B and Schafer K J 2009 Nat. Phys. 5 815
[16] Hostetter J A, TatE J L, Schafer K J and Gaarde M B 2010 Phys. Rev. A 82 023401
[17] Xiong W H, Geng J W, Tang J Y, Peng L Y and Gong Q H 2014 Phys. Rev. Lett. 112 233001
[18] Brizuela F, Heyl C M, Rudawski P, Kroon D, Rading L, Dahlstrom J M, Mauritsson J, Johnsson P, Arnold C L and LHuillier A 2013 Sci. Rep. 3 1410
[19] Xiong W H, Gong Q H and Peng L Y 2017 Phys. Rev. A 96 023421
[20] Li W B, Deng M X and Xiang Y X 2017 Chin. Phys. B 26 114302
[21] Avanaki K N, Telnov D A, Jooya H Z and Chu S I 2015 Phys. Rev. A 92 063811
[22] Soifer H, Botheron P, Shafir D, Diner A, Raz O, Bruner B D, Mairesse Y, Pons B and Dudovich N 2010 Phys. Rev. Lett. 105 143904
[23] Chini M, Wang X, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Heslar J, Telnov D A, Chu S I and Chang Z 2014 Nat. Photon. 8 437
[24] Spott A, Becker A and Jaroń-Becker A 2015 Phys. Rev. A 91 023402
[25] Du L L, Wang G L, Li P C, Zhou X X and Zhao Z X 2018 Phys. Rev. A 97 023404
[26] Ivanov M and Smirnova O 2013 Chem. Phys. 414 3
[27] Kawata I, Kono H and Fujimura Y 1999 J. Chem. Phys. 110 11152
[28] Piazza A D and Fiordilino E 2001 Phys. Rev. A 64 013414
[29] Kim H, Park J R and Lee H W 2000 J. Phys. B:At. Mol. Opt. Phys. 33 1703
[30] Huang P, Xie X T, Lü X, Li J and Yang X 2009 Phys. Rev. A 79 043806
[31] Figueira de Morisson Faria C and Rotter I 2003 Laser Phys. 13 985
[32] Figueira de Morisson Faria C 2002 Phys. Rev. A 66 013402
[33] Zhang B, Yuan J M and Zhao Z X 2012 Phys. Rev. A 85 033421
[34] Tao L, McCurdy C W and Rescigno T N 2009 Phys. Rev. A 79 012719
[35] Tong X M and Chu Shih I 2000 Phys. Rev. A 61 021802(R)
[36] Antoine P, Piraux B and Maquet A 1995 Phys. Rev. A 51 R1750
[37] Gaarde M B, Antoine P, L0 Huillier A, Schafer K J and Kulander K C 1998 Phys. Rev. A 57 4553
[38] Slepyan G Y, Maksimenko S A, Kalosha V P, Gusakov A V and Herrmann J 2001 Phys. Rev. A 63 053808
[1] Folding nucleus and unfolding dynamics of protein 2GB1
Xuefeng Wei(韦学锋) and Yanting Wang(王延颋). Chin. Phys. B, 2021, 30(2): 028703.
[2] An effective potential method for the calculation of hydrogen molecule ion energy in a strong magnetic field
Jiao Zhi-Yong (焦志勇), Li Yu-Cheng (李毓成). Chin. Phys. B, 2002, 11(5): 467-471.
No Suggested Reading articles found!