Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 108101    DOI: 10.1088/1674-1056/27/10/108101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Efficient thermal analysis method for large scale compound semiconductor integrated circuits based on heterojunction bipolar transistor

Shi-Zheng Yang(杨施政), Hong-Liang Lv(吕红亮), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门), Bin Lu(芦宾), Si-Lu Yan(严思璐)
School of Microelectronics, Xidian University, the State Key Laboratory of Wide Band Gap Semiconductor Technology, Xi'an 710071, China
Abstract  

In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductivity with temperature. The influence caused by the thermal conductivity can be equivalent to the increment of the local temperature surrounding the individual device. The junction temperature for each device can be efficiently calculated by the combination of the semi-analytic temperature distribution function and the iteration of local temperature with high accuracy, providing a temperature distribution for a full chip. Applying this method to the InP frequency divider chip and the GaAs analog to digital converter chip, the computational results well agree with the results from the simulator COMSOL and the infrared thermal imager respectively. The proposed method can also be applied to thermal analysis in various kinds of semiconductor integrated circuits.

Keywords:  thermal analysis      temperature distribution      iterative algorithm      compound semiconductor integrated circuit  
Received:  23 April 2018      Revised:  02 July 2018      Accepted manuscript online: 
PACS:  81.70.Pg (Thermal analysis, differential thermal analysis (DTA), differential thermogravimetric analysis)  
  68.60.Dv (Thermal stability; thermal effects)  
  85.40.Qx (Microcircuit quality, noise, performance, and failure analysis)  
  44.05.+e (Analytical and numerical techniques)  
Fund: 

Project supported by the Advance Research Foundation of China (Grant No. 9140Axxx501), the National Defense Advance Research Project, China (Grant No. 3151xxxx301), the Frontier Innovation Program, China (Grant No. 48xx4), and the 111 Project, China (Grant No. B12026).

Corresponding Authors:  Hong-Liang Lv     E-mail:  hllv@mail.xidian.edu.cn

Cite this article: 

Shi-Zheng Yang(杨施政), Hong-Liang Lv(吕红亮), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门), Bin Lu(芦宾), Si-Lu Yan(严思璐) Efficient thermal analysis method for large scale compound semiconductor integrated circuits based on heterojunction bipolar transistor 2018 Chin. Phys. B 27 108101

[1] Hossain M, Nosaeva K, Janke B, Weimann N, Krozer V and Heinrich W 2016 IEEE Microw. Wirel. Compon. Lett. 26
[2] Li O P, Zhang Y, Xu R M, Cheng W, Wang Y, Niu, B and Lu H Y 2016 Chin. Phys. B 25 058401
[3] Yamamoto K, Miyashita M, Maki S, Takahashi Y, Fujii K, Fujiwara S, Kitabayashi F, Suzuki S, Shimura T, Hieda M and Seki.H 2016 IEEE Trans. Microw. Theory Tech. 64 810
[4] Kang S, Kim D, Urteaga M and Seo M 2017 Proc. IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT), August 30-Septemper 1, 2017, Seoul, South Korea, p. 25
[5] Ge J, Liu H G, Su Y B, Cao Y X and Jin Z 2012 Chin. Phys. B 21 058501
[6] Luong M D, Ishikawa R, Takayama Y and Honjo K 2017 IEEE Trans. Circuits Syst. I Reg. Papers 64 1140
[7] Coquillat D, Nodjiadjim V, Blin S, Konczykowska A, Dyakonova N, Consejo C, Nouvel P, Pénarier A, Torres J, But D, Ruffenach S, Teppe F, Riet M, Muraviev A, Gutin A, Shur M and Knap W 2016 Int. J. High Speed Electron. Syst. 25 164001
[8] Urteaga M, Griffith Z, Seo M, Hacker J and Rodwell M J W 2017 Proc. IEEE 105 1051
[9] Lin L, Zhou L, Wang R, Tong L and Yin W Y 2015 IEEE Trans. Microw. Theory Tech. 63 1951
[10] Kim J, Jeon S, Kim M, Urteaga M and Jeong J 2015 IEEE Trans. Terahertz Sci. Technol. 5 215
[11] Baek S, Ahn H, Nam I, Ryu N, Lee H D, Park B and Lee O 2016 IEEE Microw. Wirel. Compon. Lett. 26 921
[12] Grandchamp B, Nodjiadjim V, Zaknoune M, Koné G A, Hainaut C, Godin J, Riet M, Zimmer T and Maneux C 2011 IEEE Trans. Electron. Devices 58 2566
[13] Su J L and Tseng H C 2017 IEEE Trans. Device Mater. Rel. 17 678
[14] Sukwon S, Peake G M, Keeler G A, Geib K M, Briggs R D, Beechem T E, Shaffer R A, Clevenger J, Patrizi G A, Klem J F, Tauke-Pedretti A and Nordquist C D 2016 IEEE Trans. Compon. Packag. Manuf. Technol. 6 740
[15] Koné G A Grandchamp B Hainaut C Marc F Maneux C Labat N Zimmer T Nodjiadjim V Riet M and Godinb J 2011 Microelectron. Reliab. 9 1730
[16] Kone G A, Maneux C, Labat N, Zimmer T, Grandchamp B, Frijlink P and Maher H 2012 Int. Conf. Indium Phosphide Relat. Mater., August 27-30, 2012, Santa Barbara, USA, p. 208
[17] Tao N, Lin B, Lee C, Henderson T and Lin B 2015 Int. J. Microw. Wirel. Technol. 7 279
[18] Chivukula V, Teeter D, Scott P, Shah B and Ji M 2014 Microelectron. Reliab. 54 2688
[19] Liu X, Yuan J and Liou J 2011 Microelectron. Reliab. 51 2147
[20] Ozalas M T 2014 Proc. Compound Semicond. Integr. Circuit Symp. (CSIC), October 19-22, 2014, La Jolla, USA, p. 1
[21] Li P, Pileggi L T, Asheghi M and Chandra R 2006 IEEE Trans. Comput-Aided Design Integr. Circuits Syst. 25 1763
[22] Yu W, Zhang T, Yuan X and Qian H 2013 IEEE Trans. Comput-Aided Design Integr. Circuits Syst. 32 2014
[23] Feng Z and Li P 2013 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21 1526
[24] Liu S S Y, Luo R G, Aroonsantidecha S, Chin C Y and Chen H M 2014 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22 1404
[25] Zhang C, Han Q G, Ma H A, Xiao H Y, Li R, Li Z C, Tian Y and Jia X P 2010 Acta Phys. Sin. 59 1923 (in Chinese)
[26] Zheng Y B, Yao J Q, Zhang L, Wang Y, Wen W Q, Jing L and Di Z G 2012 Chin. Phys. Lett. 29 024203
[27] Grasser T and Selberherr S 2000 Proc. Int. Semicond. Conf., October 10-14, 2000, Sinaia, Romania, p. 43
[28] Zhang J C, Zhang Y M, Lu H L, Zhang Y M, Xiao G H and Ye G P 2014 J. Semicond. 35 08005
[29] Palankovski V 2000 "Simulation of heterojunction bipolar transistors" Ph. D. Dissertation (Vienna:Vienna University of Technology)
[30] Harrison I, Dahlstrom M, Krishnan S, Griffith Z, Kim Y M and Rodwell M J W 2004 IEEE Trans. Electron Dev. 51 529
[31] Matsuda T, Hanai H, Tohjo T, Iwata H, Kondo D, Hatakeyama T, Ishizuka M and Ohzone T 2014 IEEE Trans. Semicond. Manuf. 27 151
[32] Cheng Y K and Kang S M 2000 IEEE Trans. Comput-Aided Design Integr. Circuits Syst. 19 1211
[1] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[2] Flow characteristics of supersonic gas passing through a circular micro-channel under different inflow conditions
Guang-Ming Guo(郭广明), Qin Luo(罗琴), Lin Zhu(朱林), Yi-Xiang Bian(边义祥). Chin. Phys. B, 2019, 28(6): 064702.
[3] Thermal analysis of GaN-based laser diode mini-array
Jun-Jie Hu(胡俊杰), Shu-Ming Zhang(张书明), De-Yao Li(李德尧), Feng Zhang(张峰), Mei-Xin Feng(冯美鑫), Peng-Yan Wen(温鹏雁), Jian-Pin Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉). Chin. Phys. B, 2018, 27(9): 094208.
[4] Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2018, 27(8): 085205.
[5] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[6] Wavelength modulation spectroscopy for measurements of gas parameters in combustion field
Dong-Sheng Qu(屈东胜), Yan-Ji Hong(洪延姬), Guang-Yu Wang(王广宇), Hu Pan(潘虎). Chin. Phys. B, 2017, 26(6): 064207.
[7] Role of entropy generation minimization in thermal optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2017, 26(12): 120505.
[8] Two-dimensional thermal illusion device with arbitrary shape based on complementary media
Ge Xia(夏舸), Wei Kou(寇蔚), Li Yang(杨立), Yong-Cheng Du(杜永成). Chin. Phys. B, 2017, 26(10): 104403.
[9] Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes
Ming-Can Qian(钱明灿), Shu-Fang Zhang(张淑芳), Hai-Jun Luo(罗海军), Xing-Ming Long(龙兴明), Fang Wu(吴芳), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Fan-Ming Meng(孟凡明), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2017, 26(10): 104402.
[10] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[11] Near-zero thermal expansion of In2(1-x)(HfMg)xMo3O12 with tailored phase transition
Yong-Guang Cheng(程永光), Yan-Chao Mao(毛彦超), Xain-Sheng Liu(刘献省), Bao-He Yuan(袁保合), Ming-Ju Chao(晁明举), Er-Jun Liang(梁二军). Chin. Phys. B, 2016, 25(8): 086501.
[12] Transient thermal analysis as measurement method for IC package structural integrity
Alexander Hanß, Maximilian Schmid, E Liu, Gordon Elger. Chin. Phys. B, 2015, 24(6): 068105.
[13] Measures of genuine multipartite entanglement for graph states
Guo Qun-Qun (郭群群), Chen Xiao-Yu (陈小余), Wang Yun-Yun (王赟赟). Chin. Phys. B, 2014, 23(5): 050309.
[14] An RLC interconnect analyzable crosstalk model considering self-heating effect
Zhu Zhang-Ming(朱樟明) and Liu Shu-Bin(刘术彬) . Chin. Phys. B, 2012, 21(2): 028401.
[15] Iterative quantum algorithm for distributed clock synchronization
Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2012, 21(10): 100309.
No Suggested Reading articles found!