Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 096802    DOI: 10.1088/1674-1056/27/9/096802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Nondestructive determination of film thickness with laser-induced surface acoustic waves

Xiao Xia(肖夏), Kong Tao(孔涛), Qi Hai Yang(戚海洋), Qing Hui Quan(秦慧全)
School of Microelectronic, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, China
Abstract  

The application of surface acoustic waves (SAWs) for thickness measurement is presented. By studying the impact of film thickness h on the dispersion phenomenon of surface acoustic waves, a method for thickness determination based on theoretical dispersion curve v (fh) and experimental dispersion curve v (f) is developed. The method provides a series of thickness values at different frequencies f, and the mean value is considered as the final result of the measurement. The thicknesses of six interconnect films are determined by SAWs, and the results are compared with the manufacturer's data. The relative differences are in the range from 0.4% to 2.18%, which indicates that the surface acoustic wave technique is reliable and accurate in the nondestructive thickness determination for films. This method can be generally used for fast and direct determination of film thickness.

Keywords:  thickness measurement      dispersion curve      surface acoustic waves      layered structure  
Received:  26 April 2018      Revised:  24 June 2018      Accepted manuscript online: 
PACS:  68.55.jd (Thickness)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  61.05.-a (Techniques for structure determination)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61571319).

Corresponding Authors:  Xia Xiao     E-mail:  xiaxiao@tju.edu.cn

Cite this article: 

Xiao Xia(肖夏), Kong Tao(孔涛), Qi Hai Yang(戚海洋), Qing Hui Quan(秦慧全) Nondestructive determination of film thickness with laser-induced surface acoustic waves 2018 Chin. Phys. B 27 096802

[1] Fourez S, Jenot F, Ouaftouh M, Duquennoy M and Ourak M 2012 Meas. Sci. Technol. 23 085608
[2] Dong G C, Baarle D V, Frenken J and Tang Q W 2016 Chin. Phys. Lett. 33 116101
[3] Zalnezhad E and Sarhan A A D 2014 Int. J. Adv. Manuf. Technol. 72 1491
[4] Gu S S, Hu X J and Huang K 2013 Acta Phys. Sin. 62 118101 (in Chinese)
[5] Yadav Y Y 2015 Thin Solid Films 591 18
[6] Ren X P, Zhou B, Li L T and Wang C L 2013 Chin. Phys. B 22 016801
[7] Yang X Y, Zhang J P, Wu Y R and Liu F S 2015 Acta Phys. Sin. 64 016803 (in Chinese)
[8] Yin W and Peyton A J 2007 NDT E Int. 40 43
[9] Qu Z, Zhao Q and Meng Y 2014 NDT E Int. 61 53
[10] Chen X L and Lei Y Z 2015 Chin. Phys. B 24 030301
[11] Franquet A, Terryn H and Vereecken J 2003 Thin Solid Films 441 76
[12] Gong J B, Dong W L, Dai R C, Wang Z P, Zhang Z M and Ding Z J 2014 Chin. Phys. B 23 087802
[13] Zhao J M and Yang P 2012 Microsyst. Technol. 18 1455
[14] Ying A J, Murray C E and Noyan I C 2009 J. Appl. Crystallogr. 42 401
[15] Kolbe M, Beckhoff B, Krumrey M and Ulm G 2005 Pectroc. Acta Pt. B-Atom. Spectr. 60 505
[16] Schneider D, Hofmann R, Schwarz T, Grosser T and Hensel E 2012 Surf. Coat. Technol. 206 2079
[17] Xiao X, Qi H Y, Tao Y and Kikkawa T 2016 Appl. Surf. Sci. 388 448
[18] Xiao X, Sun Y and Shan X M 2012 Surf. Coat. Technol. 207 240
[19] Schneider D, Schulz S E and Gessner T 2005 Microelectron. Eng. 82 393
[20] Xiao X, Qi H Y, Sui X L and Kikkawa T 2017 Appl. Surf. Sci. 399 599
[21] Farnell G W and Adler E L 1972 Phys. Acoust. (Vol. 9) (New York:Academic) pp. 35-127
[22] Xiao X, Hata N, Yamada K and Kikkawa T 2004 Jpn. J. Appl. Phys. 43 508
[23] Xiao X, Shan X M, Kayaba Y, Kohmura K, Tanaka H and Kikkawa T 2011 Microelectron. Eng. 88 666
[24] Grill A, Gates S M, Ryan T E, Nguyen S V and Priyadarshini D 2014 Appl. Phys. Rev. 1 011306
[25] Xiao X, Tao Y and Sun Y 2014 Chin. Phys. B 23 106803
[1] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[2] Study on dispersion characteristics of terahertz waves in helical waveguides
Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$. Chin. Phys. B, 2020, 29(11): 114301.
[3] Inverse problem of pulsed eddy current field of ferromagnetic plates
Chen Xing-Le (陈兴乐), Lei Yin-Zhao (雷银照). Chin. Phys. B, 2015, 24(3): 030301.
[4] Thermodynamic properties of 3C–SiC
B. Y. Thakore, S. G. Khambholja, A. Y. Vahora, N. K. Bhatt, A. R. Jani. Chin. Phys. B, 2013, 22(10): 106401.
[5] Shrinking device realized by using layered structures of homogeneous isotropic materials
Guo Ya-Nan(郭亚楠), Liu Shao-Bin(刘少斌), Zhao Xin(赵鑫), Wang Shen-Yun(王身云), and Chen Chen(陈忱) . Chin. Phys. B, 2012, 21(6): 064101.
[6] Acoustic carpet invisibility cloak with two open windows using multilayered homogeneous isotropic material
Ren Chun-Yu(任春雨), Xiang Zhi-Hai(向志海), and Cen Zhang-Zhi(岑章志) . Chin. Phys. B, 2011, 20(11): 114301.
[7] Influence of adhesive layer properties on laser-generated ultrasonic waves in thin bonded plates
Sun Hong-Xiang(孙宏祥), Xu Bai-Qiang(许伯强), Zhang Hua(张华), Gao Qian(高倩), and Zhang Shu-Yi(张淑仪). Chin. Phys. B, 2011, 20(1): 014302.
No Suggested Reading articles found!