Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 090302    DOI: 10.1088/1674-1056/27/9/090302
GENERAL Prev   Next  

Decoherence for a two-qubit system in a spin-chain environment

Yang Yang(杨阳)1, An-Min Wang(王安民)2, Lian-Zhen Cao(曹连振)1, Jia-Qiang Zhao(赵加强)1, Huai-Xin Lu(逯怀新)1
1 Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261061, China;
2 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

The quantum coherence and correlation dynamics for a two-qubit system in the Ising spin-chain environment are studied. A sudden change of coherence is found near the critical point, which provides us with an effective way to detect the quantum phase transition. By studying the relationship between quantum discord and coherence, we find that coherence displays the behavior of classical correlation for t<t0, and of quantum discord for t>t0, where t0 is the time-point of a sudden transition between classical and quantum decoherence.

Keywords:  quantum coherence      quantum discord      decoherence  
Received:  02 April 2018      Revised:  27 June 2018      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11404246) and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2017MF040).

Corresponding Authors:  Yang Yang     E-mail:  yangyang@mail.ustc.edu.cn

Cite this article: 

Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新) Decoherence for a two-qubit system in a spin-chain environment 2018 Chin. Phys. B 27 090302

[1] Asbóth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett. 94 173602
[2] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[3] Rónagel J, Abah O, Schmidt-Kaler F, Singer K and Lutz E 2014 Phys. Rev. Lett. 112 030602
[4] Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
[5] Korzekwa K, Lostaglio M, Oppenheim J and Jennings D 2016 New J. Phys. 18 023045
[6] Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
[7] Li C M, Lambert N, Chen Y N, Chen G Y and Nori F 2012 Sci. Rep. 2 885
[8] Huelga S F and Plenio 2013 Contemp. Phys. 54 181
[9] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[10] Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
[11] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[12] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[13] Girolami D, Souza A M, Giovannetti V, Tufarelli T, Filgueiras J G, Sarthour R S, Soares-Pinto D O, Oliveira I S and Adesso D 2014 Phys. Rev. Lett. 112 210401
[14] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
[15] Chitambar E and Hsieh M H 2016 Phys. Rev. Lett. 117 020402
[16] Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
[17] Hu M L and Fan H 2017 Phys. Rev. A 95 052106
[18] Hou J X, Liu S Y,Wang X H and Yang W L 2017 Phys. Rev. A 96 042324
[19] Sun Y, Mao Y Y and Luo S L 2017 EPL 118 60007
[20] Fanchini F F, Werlang T, Brasil C A, ArrudaL G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[21] Maziero J, Guzman H C, Ćeleri L C, Sarandy M S and Serra R 2010 Phys. Rev. A 82 012106
[22] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[23] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[24] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
[25] He Q L, Xu J B, Yao D X and Zhang Y Q 2011 Phys. Rev. A 84 022312
[26] Yang Y and Wang A M 2014 Chin. Phys. B 23 020307
[27] Luo D W, Lin H Q, Xu J B and Yao D X 2011 Phys. Rev. A 84 062112
[28] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[29] Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303
[30] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[31] Silva I A, Souza A M, Bromley T R, Cianciaruso M, Marx R, Sarthour R S, Oliveira R S, Franco R L, Glaser S J, deAzevedo E R, Soares-Pinto D O and Adesso G 2016 Phys. Rev. Lett. 117 160402
[32] Hu M L and Fan H 2016 Sci. Rep. 6 29260
[33] Yang L W and Xia Y J 2016 Chin. Phys. B 25 110303
[34] Du M M, Wang D and Ye L 2017 Quantum Inf. Process 16 228
[35] Girolami D and Yadin B 2017 Entropy 19 124
[36] Gao D Y, Gao Q and Xia Y J 2017 Chin. Phys. B 26 110303
[37] Yang L W, Han W and Xia Y J 2018 Chin. Phys. B 27 040302
[38] Yang Y, Wang A M, Cao L Z, Zhao J Q and Lu H X 2018 Chin. Phys. Lett. 35 080301
[39] Hu Z D, Wei M S, Wang J C, Zhang Y X and He Q L 2018 J. Phys. Soc. Jpn. 87 054002
[40] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[41] Dakić B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[42] Sachdev S 1999 Quantum Phase Transition (Cambridge:Cambridge University Press)
[43] Pfeuty P 1979 Phys. Lett. A 72 245
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[4] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[5] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[8] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[9] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[10] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[11] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[12] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[13] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[14] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[15] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
No Suggested Reading articles found!