Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 084501    DOI: 10.1088/1674-1056/27/8/084501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental and numerical study on energy dissipation in freely cooling granular gases under microgravity

Wen-Guang Wang(王文广)1,2, Mei-Ying Hou(厚美瑛)1,2, Ke Chen(陈科)1,2, Pei-Dong Yu(虞培东)3, Matthias Sperl3
1 Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt, Köln 51170, Germany
Abstract  

Energy dissipation is one of the most important properties of granular gas, which makes its behavior different from that of molecular gas. In this work we report our investigations on the freely-cooling evolution of granular gas under microgravity in a drop tower experiment, and also conduct the molecular dynamics (MD) simulation for comparison. While our experimental and simulation results support Haff's law that the kinetic energy dissipates with time t as E(t)~(1+t/τ)-2, we modify τ by taking into account the friction dissipation during collisions, and study the effects of number density and particle size on the collision frequency. From the standard deviation of the measured velocity distributions we also verify the energy dissipation law, which is in agreement with Haff's kinetic energy dissipation.

Keywords:  granular gas      freely cooling      microgravity  
Received:  08 April 2018      Revised:  17 April 2018      Accepted manuscript online: 
PACS:  45.70.-n (Granular systems)  
  45.70.Mg (Granular flow: mixing, segregation and stratification)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. U1738120 and 11474326).

Corresponding Authors:  Mei-Ying Hou     E-mail:  mayhou@iphy.ac.cn

Cite this article: 

Wen-Guang Wang(王文广), Mei-Ying Hou(厚美瑛), Ke Chen(陈科), Pei-Dong Yu(虞培东), Matthias Sperl Experimental and numerical study on energy dissipation in freely cooling granular gases under microgravity 2018 Chin. Phys. B 27 084501

[1] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259
[2] de Gennes P G 1999 Rev. Mod. Phys. 71 S374
[3] Kadanoff L P 1999 Rev. Mod. Phys. 71 435
[4] Goldhirsch I I and Zanetti G 1993 Phys. Rev. Lett. 70 1619
[5] McNamara S and Young W R 1994 Phys. Rev. E 50 R28
[6] Falcon É Wunenburger R, Évesque P, Fauve S, Chabot C, Garrabos Y and Beysens D 1999 Phys. Rev. Lett. 83 440
[7] Luding S and Herrmann H J 1999 Chaos 9 673
[8] Painter B, Dutt M and Behringer R P 2003 Physica D 175 43
[9] Miller S and Luding S 2004 Phys. Rev. E 69 031305
[10] Efrati E, Livne E and Meerson B 2005 Phys. Rev. Lett. 94 088001
[11] Meerson B and Puglisi A 2005 Europhys. Lett. 70 478
[12] Aranson I S and Tsimring L S 2006 Rev. Mod. Phys. 78 641
[13] Fingerle A and Herminghaus S 2006 Phys. Rev. Lett. 97 078001
[14] Yu P, Frank-Richter S, Börngen A and Sperl M 2014 Granul. Matter 16 165
[15] Chen Y, Pierre E and Hou M 2012 Chin. Phys. Lett. 29 074501
[16] Mei Y, Chen Y, Wang W and Hou M 2016 Chin. Phys. B 25 084501
[17] Wang Y 2017 Chin. Phys. B 26 014503
[18] Haff P K 1983 J. Fluid Mech. 134 401
[19] Brito R and Ernst M H 1998 Europhys. Lett. 43 497
[20] Luding S, Huthmann M, McNamara S and Zippelius A 1998 Phys. Rev. E 58 3416
[21] Garzó V and Dufty J 1999 Phys. Rev. E 60 5706
[22] Huthmann M, Orza J A and Brito R 2000 Granul. Matter 2 189
[23] Zaburdaev V Y, Brinkmann M and Herminghaus S 2006 Phys. Rev. Lett. 97 018001
[24] Hayakawa H and Otsuki M 2007 Phys. Rev. E 76 051304
[25] Meerson B, Fouxon I and Vilenkin A 2008 Phys. Rev. E 77 021307
[26] Santos A and Montanero J M 2009 Granul. Matter 11 157
[27] Kolvin I, Livne E and Meerson B 2010 Phys. Rev. E 82 021302
[28] Mitrano P P, Garzo V, Hilger A M, Ewasko C J and Hrenya C M 2012 Phys. Rev. E 85 041303
[29] Brilliantov N V and Pöschel T 2000 Phys. Rev. E 61 5573
[30] McNamara S and Luding S 1998 Phys. Rev. E 58 2247
[31] Ben-Naim E, Chen S Y, Doolen G D and Redner S 1999 Phys. Rev. Lett. 83 4069
[32] Nie X, Ben-Naim E and Chen S 2002 Phys. Rev. Lett. 89 204301
[33] van Zon J S and MacKintosh F C 2004 Phys. Rev. Lett. 93 038001
[34] Shinde M, Das D and Rajesh R 2007 Phys. Rev. Lett. 99 234505
[35] Shinde M, Das D and Rajesh R 2009 Phys. Rev. E 79 021303
[36] Shinde M, Das D and Rajesh R 2011 Phys. Rev. E 84 031310
[37] Villemot F and Talbot J 2012 Granul. Matter 14 91
[38] Pathak S N, Das D and Rajesh R 2014 Europhys. Lett. 107 44001
[39] Pathak S N, Jabeen Z, Das D and Rajesh R 2014 Phys. Rev. Lett. 112 038001
[40] Maaß C C, Isert N, Maret G and Aegerter C M 2008 Phys. Rev. Lett. 100 248001
[41] Tatsumi S, Murayama Y, Hayakawa H and Sano M 2009 J. Fluid Mech. 641 521
[42] Burton J C, Lu P Y and Nagel S R 2013 Phys. Rev. Lett. 111 188001
[43] Harth K, Trittel T, Wegner S and Stannarius R 2018 Phys. Rev. Lett. 120 214301
[44] Berry M V and Geim A K 1997 Eur. J. Phys. 18 307
[45] Luding S 2008 Granul. Matter 10 235
[46] Wang W, Zhou Z, Zong J and Hou M 2017 Chin. Phys. B 26 044501
[47] Opsomer E, Ludewig F and Vandewalle N 2012 Europhys. Lett. 99 40001
[1] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
[2] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[3] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[4] Parametric study of the clustering transition in vibration driven granular gas system
Qi-Lin Wu(吴麒麟), Mei-Ying Hou(厚美瑛), Lei Yang(杨磊), Wei Wang(王伟), Guang-Hui Yang(杨光辉), Ke-Wei Tao(陶科伟), Liang-Wen Chen(陈良文), Sheng Zhang(张晟). Chin. Phys. B, 2020, 29(5): 054502.
[5] DEM simulation of granular segregation in two-compartment system under zero gravity
Wenguang Wang(王文广), Zhigang Zhou(周志刚), Jin Zong(宗谨), Meiying Hou(厚美瑛). Chin. Phys. B, 2017, 26(4): 044501.
[6] The anisotropy of free path in a vibro-fluidized granular gas
Yifeng Mei(梅一枫), Yanpei Chen(陈延佩), Wei Wang(王维), Meiying Hou(厚美瑛). Chin. Phys. B, 2016, 25(8): 084501.
[7] Imperfect pitchfork bifurcation in asymmetric two-compartment granular gas
Zhang Yin (张因), Li Yin-Chang (李寅阊), Liu Rui (刘锐), Cui Fei-Fei (崔非非), Pierre Evesque, Hou Mei-Ying (厚美瑛). Chin. Phys. B, 2013, 22(5): 054701.
[8] Effect of buoyancy-driven convection on steady state dendritic growth in a binary alloy
Chen Ming-Wen (陈明文), Wang Bao (王宝), Wang Zi-Dong (王自东). Chin. Phys. B, 2013, 22(11): 116805.
[9] Effects of interface kinetics and anisotropy on the stability of the growing crystal face and dissolution face during crystallization from solution under microgravity
Zhu Zhen-He (朱振和), Hong Yong (洪勇), Ge Pei-Wen (葛培文), Yu Yu-De (俞育德). Chin. Phys. B, 2004, 13(12): 1982-1991.
No Suggested Reading articles found!