Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067401    DOI: 10.1088/1674-1056/27/6/067401
RAPID COMMUNICATION Prev   Next  

Nodeless superconductivity in a quasi-two-dimensional superconductor AuTe2Se4/3

Xiao-Yu Jia(贾小雨)1, Yun-Jie Yu(俞云杰)1, Xu Chen(陈旭)2, Jian-Gang Guo(郭建刚)2, Tian-Ping Ying(应天平)1, Lan-Po He(何兰坡)1, Xiao-Long Chen(陈小龙)2,3,4, Shi-Yan Li(李世燕)1,5
1 State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  

We performed ultra-low temperature thermal conductivity measurements on the single crystal of a new gold-based quasi-two-dimensional superconductor AuTe2Se4/3, which has a superconducting transition temperature Tc=2.70 K. A negligible residual linear term κ0/T in zero magnetic field is observed, which suggests fully gapped superconducting state. Furthermore, the field dependence of κ0/T is similar to that of the multi-band s-wave superconductor BaFe1.9Ni0.1As2 at low field. These results reveal multiple nodeless superconducting gaps in this interesting quasi-two-dimensional superconductor with Berezinsky-Kosterlitz-Thouless topological transition.

Keywords:  superconductivity      thermal transport measurement      gap structure      two-dimensional material  
Received:  16 April 2018      Revised:  24 April 2018      Published:  05 June 2018
PACS:  74.25.fc (Electric and thermal conductivity)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
  74.70.Dd (Ternary, quaternary, and multinary compounds)  
Fund: 

Project supported by the Key Basic Research Program of China (Grant Nos.2015CB921401 and 2016YFA0300503),the National Natural Science Foundation of China (Grant Nos.11422429 and 11421404),China Postdoctoral Science Foundation (Grant No.2016T90332),the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning,and STCSM of China (Grant No.15XD1500200),and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB04040200).

Corresponding Authors:  Shi-Yan Li     E-mail:  shiyan_li@fudan.edu.cn

Cite this article: 

Xiao-Yu Jia(贾小雨), Yun-Jie Yu(俞云杰), Xu Chen(陈旭), Jian-Gang Guo(郭建刚), Tian-Ping Ying(应天平), Lan-Po He(何兰坡), Xiao-Long Chen(陈小龙), Shi-Yan Li(李世燕) Nodeless superconductivity in a quasi-two-dimensional superconductor AuTe2Se4/3 2018 Chin. Phys. B 27 067401

[1] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[2] Xing Y, Zhang H M, Fu H L, Liu H, Sun Y, Peng J P, Wang F, Lin X, Ma X C, Xue Q K, Wang J and Xie X C 2015 Science 350 542
[3] Saito Y, Nojima T and Iwasa Y 2016 Nat. Rev. Mater. 2 16094
[4] Qin S, Kim J, Niu Q and Shih C K 2009 Science 324 1314
[5] Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L L, Ma X C, Chen X, Wang Y Y, Liu Y, Lin H Q, Jia J F and Xue Q K 2010 Nat. Phys. 6 104
[6] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rütschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
[7] Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A and Bozovic I 2008 Nature 455 782
[8] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193
[9] Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, Yanase Y and Iwasa Y 2015 Nat. Phys. 12 144
[10] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[11] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[12] Jiang D, Hu T, You L, Li Q, Li A, Wang H, Mu G, Chen Z, Zhang H, Yu G, Zhu J, Sun Q, Lin C, Xiao H, Xie X and Jiang M 2014 Nat. Commun. 5 5708
[13] Xi X, Zhao L, Wang Z, Berger H, Forro L, Shan J and Mak K F 2015 Nat. Nanotechnol. 10 765
[14] Staley N E, Wu J, Eklund P, Liu Y, Li L and Xu Z 2009 Phys. Rev. B 80 184505
[15] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forro L, Shan J and Mak K F 2016 Nat. Phys. 12 139
[16] Guo J G, Chen X, Jia X Y, Zhang Q H, Liu N, Lei H C, Li S Y, Gu L, Jin S F and Chen X L 2017 Nat. Commun. 8 871
[17] Duwez P, Willens R H and Klement W 1960 J. Appl. Phys. 31 1136
[18] Luo H and Klement W 1962 J. Chem. Phys. 36 1870
[19] Tsuei C C and Newkirk L R 1969 Phys. Rev. 183 619
[20] Gurevich A 2003 Phys. Rev. B 67 184515
[21] Gurevich A 2007 Physica C Supercond. 456 160
[22] Buzea C and Yamashita T 2001 Supercond. Sci. Technol. 14 R115
[23] Maple M B, Chen J W, Lambert S E, Fisk Z, Smith J L, Ott H R, Brooks J S and Naughton M J 1985 Phys. Rev. Lett. 54 477
[24] Shakeripour H, Petrovic C and Taillefer L 2009 New J. Phys. 11 055065
[25] Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M and Takagi H 2003 Phys. Rev. B 67 174520
[26] Li S Y, Bonnemaison J B, Payeur A, Fournier P, Wang C H, Chen X H and Taillefer L 2008 Phys. Rev. B 77 134501
[27] Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M and Brill J W 2003 Phys. Rev. Lett. 90 117003
[28] Proust C, Boaknin E, Hill R W, Taillefer L and Mackenzie A P 2002 Phys. Rev. Lett. 89 147003
[29] Suzuki M, Tanatar M A, Kikugawa N, Mao Z Q, Maeno Y and Ishiguro T 2002 Phys. Rev. Lett. 88 227004
[30] Lowell J and Sousa J B 1970 J. Low Temp. Phys. 3 65
[31] Willis J O and Ginsberg D M 1976 Phys. Rev. B 14 1916
[32] Ding L, Dong J K, Zhou S Y, Guan T Y, Qiu X, Zhang C, Li L J, Lin X, Cao G H, Xu Z A and Li S Y 2009 New J. Phys. 11 093018
[33] Terashima K, Sekiba Y, Bowen J H, Nakayama K, Kawahara T, Sato T, Richard P, Xu Y M, Li L J, Cao G H, Xu Z A, Ding H and Takahashi T 2009 Proc. Natl. Acad. Sci. 106 7330
[34] Chen X H, Dai P C, Feng D L, Xiang T and Zhang F C 2014 Nat. Sci. Rev. 1 371
[35] Norman M R 2011 Science 332 196
[36] Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M and Iwasa Y 2014 J. Phys. Soc. Jpn. 83 032001
[37] Saito Y, Kasahara Y, Ye J, Iwasa Y and Nojima T 2015 Science 125 9440
[38] Shi W, Ye J, Zhang Y, Suzuki R, Yoshida M, Miyazaki J, Inoue N, Saito Y and Iwasa Y 2015 Sci. Rep. 5 12534
[39] Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. Lett. 116 077002
[40] Lei B, Wang N Z, Shang C, Meng F B, Ma L K, Luo X G, Wu T, Sun Z, Wang Y, Jiang Z, Mao B H, Liu Z, Yu Y J, Zhang Y B and Chen X H 2017 Phys. Rev. B 95 020503
[41] Ying T P, Wang M X, Zhao Z Y, Zhang Z Z, Jia X Y, Li Y C, Lei B, Li Q, Yu Y, Cheng E J, An Z H, Zhang Y, Yang W, Chen X H and Li S Y 2018 arXiv:1802.01484[cond-mat]
[1] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[2] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn 2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[3] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[4] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[5] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[6] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[7] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[8] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[9] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[10] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[11] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[12] Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure
Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟). Chin. Phys. B, 2020, 29(7): 077304.
[13] Topology and ferroelectricity in group-V monolayers
Mutee Ur Rehman, Chenqiang Hua(华陈强), Yunhao Lu(陆赟豪). Chin. Phys. B, 2020, 29(5): 057304.
[14] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华). Chin. Phys. B, 2020, 29(3): 037401.
[15] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
No Suggested Reading articles found!
    PDF Preview