Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 068506    DOI: 10.1088/1674-1056/27/6/068506
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Integration of a field-effect-transistor terahertz detector with a diagonal horn antenna

Xiang Li(李想)1,2, Jian-dong Sun(孙建东)2, Zhi-peng Zhang(张志鹏)2, V V Popov3, Hua Qin(秦华)2
1 School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China;
2 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
3 Kotelnikov Institute of Radio Engineering and Electronics, Saratov Branch, Russian Academy of Sciences, Saratov 410019, Russia
Abstract  

Efficient coupling of terahertz electromagnetic wave with the active region in a terahertz detector is required to enhance the optical sensitivity. In this work, we demonstrate direct integration of a field-effect-transistor (FET) terahertz detector chip at the waveguide port of a horn antenna. Although the integration without a proper backshot is rather preliminary, the noise-equivalent power is greatly reduced from 2.7 nW/Hz1/2 for the bare detector chip to 76 pW/Hz1/2 at 340 GHz. The enhancement factor of about 30 is confirmed by simulations revealing the effective increase in the energy flux density seen by the detector. The simulation further confirms the frequency response of the horn antenna and the on-chip antennas. A design with the detector chip fully embedded within a waveguide cavity could be made to further enhance the coupling efficiency.

Keywords:  terahertz detector      high electron mobility transistor      diagonal horn  
Received:  25 December 2017      Revised:  08 March 2018      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  72.80.Ey (III-V and II-VI semiconductors)  
  42.82.Et (Waveguides, couplers, and arrays)  
  87.50.U-  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos.2016YFF0100501 and 2016YFC0801203),the National Natural Science Foundation of China (Grant Nos.61611530708,11403084,61401456,61401297,and 61505242),the Six Talent Peaks Project of Jiangsu Province,China (Grant No.XXRJ-079),the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No.2017372),and the Russian Foundation for Basic Research (Grant No.17-52-53063).

Corresponding Authors:  Jian-dong Sun, Hua Qin     E-mail:  jdsun2008@sinano.ac.cn;hqin2007@sinano.ac.cn

Cite this article: 

Xiang Li(李想), Jian-dong Sun(孙建东), Zhi-peng Zhang(张志鹏), V V Popov, Hua Qin(秦华) Integration of a field-effect-transistor terahertz detector with a diagonal horn antenna 2018 Chin. Phys. B 27 068506

[1] Cai Y, Brener I, Lopata J, Wynn J, Pfeiffer L, Stark J B, Wu Q, Zhang X C and Federici J F 1998 Appl. Phys. Lett. 73 444
[2] Kawano Y and Ishibashi K 2008 Nat. Photon. 2 618
[3] Richards P L 1994 J. Appl. Phys. 76 1
[4] Feng W, Zhang R and Cao J C 2015 Acta Phys. Sin. 64 229501(in Chinese)
[5] See https://vadiodes.com/en/products/detectors for the specifications of different SBD detectors coupling with waveguide or silicon lens
[6] Ohkawa K, Sakakibara K, Aoki Y, Kikuma N and Hirayama H 2006 Asia-Pacific Microwave Conference, 2006, APMC 2006, IEEE p.~1837
[7] Kroug M, Cherednichenko S, Merkel H, Kollbergl E, Voronov B, Gol'tsman G, Huebers H W and Richter H 2001 IEEE Trans. Appl. Supercond. 11 962
[8] Bowers J E and Burrus C A 1986 Electron. Lett. 22 905
[9] Seliuta D, Kašalynas I, Tamošiūnas V, Balakauskas S, Martūnas Z, Ašmontas S, Valušis G, Lisauskas A, Roskos H G and Köhler K 2006 Electron. Lett. 42 825
[10] Hadi R l, Sherry H, Grzyb J, Baktash N, Zhao Y, Ojefors E, Kaiser A, Cathelin A and Pfeiffer U, 2011 Microwave Symposium Digest (MTT), 2011 IEEE 1
[11] Hesler J L. and Crowe T W 2007 ISSTT 89
[12] Schoenherr D, Bleasdale C, Goebel T, Sydlo C, Hartnagel H L, Lewis R and Meissner P 2010 35th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz), IEEE 1
[13] Bauer M, Boppel S, Zhang J S, Rämer A, Chevtchenko S, Lisauskas A, Heinrich W, Krozer V and Roskos H G 2016 International Journal of High Speed Electronics and Systems 25 1640013
[14] Andersson M A, Zhang Y X and Stake J 2017 IEEE Trans. Microwave Theory Techniq. 65 165
[15] Johansson J F and Whyborn N D 1992 IEEE Trans. Microwave Theory Techniq. 40 795
[16] Qin H, Li X, Sun J D, Zhang Z P, Sun Y F, Yu Y, Li X X and Luo M C 2017 Appl. Phys. Lett. 110 171109
[17] Sun J D, Sun Y F, Wu D M, Cai Y, Qin H and Zhang B S 2012 Appl. Phys. Lett. 100 013506
[18] Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S and Wu D M 2012 Chin. Phys. B 21 108504
[19] Yang X X, Sun J D, Qin H, Lv L, Su L N, Yan B, Li X X, Zhang Z P and Fang J Y 2015 Chin. Phys. B 24 047206
[1] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[2] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[3] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[4] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[5] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[6] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[7] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[8] Effect of defects properties on InP-based high electron mobility transistors
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2019, 28(7): 078501.
[9] The origin of distorted intensity pattern sensed by a lens and antenna coupled AlGaN/GaN-HEMT terahertz detector
Xiang Li(李想), Jian-Dong Sun(孙建东), Hong-Juan Huang(黄宏娟), Zhi-Peng Zhang(张志鹏), Lin Jin(靳琳), Yun-Fei Sun(孙云飞), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2019, 28(11): 118502.
[10] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[11] Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector
Jin-Lun Li(李金伦), Shao-Hui Cui(崔少辉), Jian-Xing Xu(徐建星), Xiao-Ran Cui(崔晓然), Chun-Yan Guo(郭春妍), Ben Ma(马奔), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(4): 047101.
[12] Performance enhancement of CMOS terahertz detector by drain current
Xingxing Zhang(张行行), Xiaoli Ji(纪小丽), Yiming Liao(廖轶明), Jingyu Peng(彭静宇), Chenxin Zhu(朱晨昕), Feng Yan(闫锋). Chin. Phys. B, 2017, 26(9): 098401.
[13] A novel enhancement mode AlGaN/GaN high electron mobility transistor with split floating gates
Hui Wang(王辉), Ning Wang(王宁), Ling-Li Jiang(蒋苓利), Xin-Peng Lin(林新鹏), Hai-Yue Zhao(赵海月), Hong-Yu Yu(于洪宇). Chin. Phys. B, 2017, 26(4): 047305.
[14] Growth condition optimization and mobility enhancement through inserting AlAs monolayer in the InP-based InxGa1-xAs/In0.52Al0.48As HEMT structures
Shu-Xing Zhou(周书星), Ming Qi(齐鸣), Li-Kun Ai(艾立鹍), An-Huai Xu(徐安怀). Chin. Phys. B, 2016, 25(9): 096801.
[15] Recessed-gate quasi-enhancement-mode AlGaN/GaN high electron mobility transistors with oxygen plasma treatment
Yun-Long He(何云龙), Chong Wang(王冲), Min-Han Mi(宓珉瀚), Xue-Feng Zheng(郑雪峰), Meng Zhang(张濛), Meng-Di Zhao(赵梦荻), Heng-Shuang Zhang(张恒爽), Li-Xiang Chen(陈立香), Jin-Cheng Zhang(张进成), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(11): 117305.
No Suggested Reading articles found!