Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 055203    DOI: 10.1088/1674-1056/27/5/055203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Analysis of Landau damping in radially inhomogeneous plasma column

H Rajabalinia-Jelodar1, M K Salem1, F M Aghamir2, H Zakeri-Khatir2
1 Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran;
2 Department of Physics, University of Tehran, Tehran, Iran
Abstract  The Landau damping behavior in a cylindrical inhomogeneous warm magnetized plasma waveguide has been studied. The radial inhomogeneity for different characteristic lengths (L0) with strong spatial dispersion has been taken into account. The analyses have been considered for two limits ωce < ωpe and ωce > ωpe. Due to the radial inhomogeneity of the plasma, all essential equations for studying the Landau damping are calculated in the Bessel-Furrier and differential Bessel-Furrier expansions. The dependence of Landau damping on the inhomogeneity, temperature and external magnetic field for electrostatic modes is scrutinized and described in detail through numerical calculations. The associated numerical results are presented and discussed.
Keywords:  inhomogeneous warm plasma      cylindrical plasma waveguide      Landau damping      electrostatic modes  
Received:  18 August 2017      Revised:  26 February 2018      Accepted manuscript online: 
PACS:  52.40.Fd (Plasma interactions with antennas; plasma-filled waveguides)  
  94.20.Fg (Plasma temperature and density)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.25.Tx (Emission, absorption, and scattering of particles)  
Corresponding Authors:  M K Salem     E-mail:  mkssalem@gmail.com

Cite this article: 

H Rajabalinia-Jelodar, M K Salem, F M Aghamir, H Zakeri-Khatir Analysis of Landau damping in radially inhomogeneous plasma column 2018 Chin. Phys. B 27 055203

[11] Li B, Li H, Wang H, Xie J and Liu W 2011 J. Appl. Phys. 110 073308
[1] Bustamante E, Calderon M, Senties J and Anabitarte E 1989 J. Phys. D:Appl. Phys. 22 408
[12] Lu X P and Laroussi M 2008 Appl. Phys. Lett. 92 051501
[2] Shivarova A and Tarnev K 1998 J. Phys. D:Appl. Phys. 31 2543
[13] Laroussi M 1996 Int. J. Infrared. Millimeter. Waves. 17 2215
[3] Saber M G, Sagor R H and Amin M R 2016 Chin. Phys. Lett. 33 018401
[4] Carmel Y, Lou W, Antonsen Jr T, Rodgers J, Levush B, Destler W and Granatstein V 1992 Phys. Fluids B 4 2286
[14] Long J Z 2014 Chin. Phys. Lett. 31 035203
[5] Kuzelev M, Loza O, Rukhadze A, Strelkov P and Shkvarunets A 2001 Plasma Phys. Rep. 27 669
[15] Hu Y L, Chen Z Q, Liu M H, Hong L L, Li P, Zheng X L, Xia G Q and Hu X W 2011 Chin. Phys. Lett. 28 115201
[16] Chen Z Q, Yin Z X, Xia G Q, Hong L L, Hu Y L, Liu M H, Hu X W and Kudryavtsev A A 2015 Chin. Phys. B 24 025203
[6] Li S Z, Chen C J, Zhang X, Zhang J and Wang Y X 2015 Plasma Sources Sci. Technol. 24 025003
[7] Yang Y, Tan J, Sheng D and Yang G 2008 High Power. Laser Part. Beams. 20 649
[17] Wen-Qiu L, Gang W and Xiao-Bao S 2017 Acta Phys. Sin. 66 (in Chinese)
[18] Sun X F, Jiang Z H, Xu T, Hu X W, Zhuang G, Wang L and Wang X H 2015 Chin. Phys. Lett. 32 125202
[8] Yang G 2009 Def. Sci. J. 59 55
[9] Guo B and Wang X 2005 Phys. Plasmas 12 084506
[19] Vidmar R J 1990 IEEE Trans. Plasma Sci. 18 733
[20] Ghosh S K and Pal S 1983 J. Plasma. Phys. 29 383
[10] Laroussi M and Roth J R 1993 IEEE Trans. Plasma Sci. 21 366
[21] Pytte A and Blanken R 1964 Phys. Rev. 133 A668
[11] Li B, Li H, Wang H, Xie J and Liu W 2011 J. Appl. Phys. 110 073308
[22] Phalswal D and Varma N 1979 Contrib. Plasma Phys. 19 277
[12] Lu X P and Laroussi M 2008 Appl. Phys. Lett. 92 051501
[13] Laroussi M 1996 Int. J. Infrared. Millimeter. Waves. 17 2215
[23] Xi Y B and Liu Y 2012 Phys. Plasmas 19 073301
[24] Kuckes A 1968 Plasma. Phys. 10 367
[14] Long J Z 2014 Chin. Phys. Lett. 31 035203
[15] Hu Y L, Chen Z Q, Liu M H, Hong L L, Li P, Zheng X L, Xia G Q and Hu X W 2011 Chin. Phys. Lett. 28 115201
[25] Harvey B and Lashmore-Davies C 1993 Phys. Fluids. B 5 3864
[16] Chen Z Q, Yin Z X, Xia G Q, Hong L L, Hu Y L, Liu M H, Hu X W and Kudryavtsev A A 2015 Chin. Phys. B 24 025203
[26] Bénisti D, Morice O and Gremillet L 2012 Phys. Plasmas 19 063110
[27] Ganguli A, Akhtar K and Tarey R 2007 Phys. Plasmas 14 102107
[17] Wen-Qiu L, Gang W and Xiao-Bao S 2017 Acta Phys. Sin. 66 (in Chinese)
[28] Ganguli A, Sahu B and Tarey R 2007 Phys. Plasmas 14 113503
[18] Sun X F, Jiang Z H, Xu T, Hu X W, Zhuang G, Wang L and Wang X H 2015 Chin. Phys. Lett. 32 125202
[19] Vidmar R J 1990 IEEE Trans. Plasma Sci. 18 733
[29] Landau L D 1946 Zh. Eksp. Teor. Fiz. 10 25
[20] Ghosh S K and Pal S 1983 J. Plasma. Phys. 29 383
[30] Rahmut A, Peng S Q and Ma X D 2014 Chin. Phys. B 23 090311
[21] Pytte A and Blanken R 1964 Phys. Rev. 133 A668
[31] Ji P Y, Lu N and Zhu J 2009 Chin. Phys. Soc. 58 7473
[32] Moniri S, Yavari H and Darsheshdar E 2016 Chin. Phys. B 25 126701
[22] Phalswal D and Varma N 1979 Contrib. Plasma Phys. 19 277
[23] Xi Y B and Liu Y 2012 Phys. Plasmas 19 073301
[33] Liu S Q and Xiao C 2011 Chin. Phys. B 20 065201
[24] Kuckes A 1968 Plasma. Phys. 10 367
[34] Zhou Y, Huang G X, Ma X D and Ma Y L 2006 Chin. Phys. B 15 1871
[25] Harvey B and Lashmore-Davies C 1993 Phys. Fluids. B 5 3864
[35] Danielson J, Anderegg F and Driscoll C 2004 Phys. Rev. Lett. 92 245003
[36] Qureshi M, Sehar S, Shi J and Shah H 2013 Chin. Phys. B 22 115201
[26] Bénisti D, Morice O and Gremillet L 2012 Phys. Plasmas 19 063110
[37] Karpman V and Shklyar D 1974 Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow
[27] Ganguli A, Akhtar K and Tarey R 2007 Phys. Plasmas 14 102107
[38] Xu H, Sheng Z M, Kong X M and Su F F 2017 Phys. Plasmas 24 022101
[28] Ganguli A, Sahu B and Tarey R 2007 Phys. Plasmas 14 113503
[39] Rose D, Guillory J and Beall J 2005 Phys. Plasmas 12 014501
[29] Landau L D 1946 Zh. Eksp. Teor. Fiz. 10 25
[30] Rahmut A, Peng S Q and Ma X D 2014 Chin. Phys. B 23 090311
[40] Zakeri-Khatir H and Aghamir F 2015 Chin. Phys. B 24 025201
[41] Diaz C 1981 Plasma. Phys. 23 455
[31] Ji P Y, Lu N and Zhu J 2009 Chin. Phys. Soc. 58 7473
[42] Zakeri-Khatir H and Aghamir F 2016 Plasma Phys. Controlled Fusion 58 075012
[32] Moniri S, Yavari H and Darsheshdar E 2016 Chin. Phys. B 25 126701
[43] Fried B and Conte S 1961 New York 0000
[33] Liu S Q and Xiao C 2011 Chin. Phys. B 20 065201
[44] Swanson D G 2003 Plasma Waves (2nd Edn.) (Bristol and Philadelphia:Institute of Physics Publishing) p. 29
[34] Zhou Y, Huang G X, Ma X D and Ma Y L 2006 Chin. Phys. B 15 1871
[45] Hirshfield J, LaPointe M, Ganguly A, Yoder R and Wang C 1996 Phys. Plasmas 3 2163
[35] Danielson J, Anderegg F and Driscoll C 2004 Phys. Rev. Lett. 92 245003
[46] Fisch N J 1987 Rev. Mod. Phys. 59 175
[36] Qureshi M, Sehar S, Shi J and Shah H 2013 Chin. Phys. B 22 115201
[37] Karpman V and Shklyar D 1974 Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow
[47] Chen F F 1991 Plasma Phys. Controlled Fusion 33 339
[48] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions (1nd Edn.) p. 265
[38] Xu H, Sheng Z M, Kong X M and Su F F 2017 Phys. Plasmas 24 022101
[39] Rose D, Guillory J and Beall J 2005 Phys. Plasmas 12 014501
[49] Hwang U H, Willett J E and Mehdian H 1998 Phys. Plasmas 5 273
[40] Zakeri-Khatir H and Aghamir F 2015 Chin. Phys. B 24 025201
[50] Malmberg J and Wharton C 1966 Phys. Rev. Lett. 17 175
[41] Diaz C 1981 Plasma. Phys. 23 455
[42] Zakeri-Khatir H and Aghamir F 2016 Plasma Phys. Controlled Fusion 58 075012
[43] Fried B and Conte S 1961 New York 0000
[44] Swanson D G 2003 Plasma Waves (2nd Edn.) (Bristol and Philadelphia:Institute of Physics Publishing) p. 29
[45] Hirshfield J, LaPointe M, Ganguly A, Yoder R and Wang C 1996 Phys. Plasmas 3 2163
[46] Fisch N J 1987 Rev. Mod. Phys. 59 175
[47] Chen F F 1991 Plasma Phys. Controlled Fusion 33 339
[48] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions (1nd Edn.) p. 265
[49] Hwang U H, Willett J E and Mehdian H 1998 Phys. Plasmas 5 273
[50] Malmberg J and Wharton C 1966 Phys. Rev. Lett. 17 175
[1] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[2] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[3] Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit
S M Moniri, H Yavari, E Darsheshdar. Chin. Phys. B, 2016, 25(12): 126701.
[4] Landau damping in a bounded magnetized plasma column
H. Zakeri-Khatir, F. M. Aghamir. Chin. Phys. B, 2015, 24(2): 025201.
[5] Landau damping and frequency-shift of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate
Rahmut Arzigul (阿孜古丽·热合木提), Peng Sheng-Qiang (彭胜强), Ma Xiao-Dong (马晓栋). Chin. Phys. B, 2014, 23(9): 090311.
[6] Effect on Landau damping rates for non-Maxwellian distribution function consisting of two electron populations
M. N. S. Qureshi, S. Sehar, H. A. Shah, J. B. Cao. Chin. Phys. B, 2013, 22(3): 035201.
[7] Nonlinear Landau damping of high frequency waves in non-Maxwellian plasmas
M. N. S. Qureshi, Sumbul Sehar, J. K. Shi, H. A. Shah. Chin. Phys. B, 2013, 22(11): 115201.
[8] Landau damping of collective mode in a quasi-two-dimensional repulsive Bose–Einstein condensate
Ma Xiao-Dong(马晓栋), Yang Zhan-Jin(杨占金), Lu Jun-Zhe(路俊哲), and Wei Wei(魏蔚). Chin. Phys. B, 2011, 20(7): 070307.
[9] Landau damping of longitudinal oscillation in ultra- relativistic plasmas with nonextensive distribution
Liu San-Qiu (刘三秋), Xiao-Chang (陈小昌). Chin. Phys. B, 2011, 20(6): 065201.
[10] Landau damping of collective modes in a harmonically trapped Bose--Einstein condensate
Ma Xiao-Dong(马晓栋), Zhou Yu(周昱), Ma Yong-Li(马永利), and Huang Guo-Xiang(黄国翔). Chin. Phys. B, 2006, 15(8): 1871-1878.
No Suggested Reading articles found!