Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047301    DOI: 10.1088/1674-1056/27/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Conductivity and band alignment of LaCrO3/SrTiO3 (111) heterostructure

Yan-Peng Hong(洪彦鹏), Xin-Xin Wang(王欣欣), Guo-Liang Qu(曲国良), Cheng-Jian Li(厉承剑), Hong-Xia Xue(薛红霞), Ke-Jian Liu(刘科践), Yong-Chun Li(李永春), Chang-Min Xiong(熊昌民), Rui-Fen Dou(窦瑞芬), Lin He(何林), Jia-Cai Nie(聂家财)
Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  

In this work, we investigate the electrical transport property and electronic structure of oxide heterostructure LaCrO3/SrTiO3 (111). The interface grown under relatively low oxygen partial pressure is found to be metallic with a conducting critical thickness of 11 unit cells of LaCrO3. This criticality is also observed by x-ray photoelectron spectroscopy, in which the Ti3+ signal intensity at the spectrum edge of the Ti-2p3/2 core level increases rapidly when the critical thickness is reached. The variations of the valence band offset and full width at half maximum of the core-level spectrum with LaCrO3 thickness suggest that the built-in fields exist both in LaCrO3 and in SrTiO3. Two possible origins are proposed:the charge transfer from LaCrO3 and the formation of a quantum well in SrTiO3. Our results shed light on the understanding of the doping mechanism at the polar/non-polar oxide interface. Moreover, due to the interesting lattice and spin structure of LCO in the (111) direction, our work provides a basis for further exploring the novel topological quantum phenomena in this system.

Keywords:  oxide heterostructure      LaCrO3/SrTiO3 (111)      x-ray photoelectron spectroscopy      electronic structure  
Received:  02 November 2017      Revised:  08 January 2018      Accepted manuscript online: 
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.40.-c (Electronic transport in interface structures)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11674031, 11474022 11474024, 11422430, and 11374035) and the National Basic Research Program of China (Grant Nos. 2014CB920903, 2013CB921701, and 2013CBA01603).

Corresponding Authors:  Jia-Cai Nie     E-mail:  jcnie@bnu.edu.cn

Cite this article: 

Yan-Peng Hong(洪彦鹏), Xin-Xin Wang(王欣欣), Guo-Liang Qu(曲国良), Cheng-Jian Li(厉承剑), Hong-Xia Xue(薛红霞), Ke-Jian Liu(刘科践), Yong-Chun Li(李永春), Chang-Min Xiong(熊昌民), Rui-Fen Dou(窦瑞芬), Lin He(何林), Jia-Cai Nie(聂家财) Conductivity and band alignment of LaCrO3/SrTiO3 (111) heterostructure 2018 Chin. Phys. B 27 047301

[1] Ohtomo A and Hwang H Y 2004 Nature 427 423
[2] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
[3] Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, van der Wiel W G, Rijnders G, Blank D H and Hilgenkamp H 2007 Nat. Mater. 6 493
[4] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624
[5] Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y and Moler K A 2011 Nat. Phys. 7 767
[6] Dikin D, Mehta M, Bark C, Folkman C, Eom C and Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802
[7] Li L, Richter C, Mannhart J and Ashoori R C 2011 Nat. Phys. 7 762
[8] Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
[9] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
[10] Cen C, Thiel S, Mannhart J and Levy J 2009 Science 323 1026
[11] Woltmann C, Harada T, Boschker H, Srot V, van Aken P A, Klauk H and Mannhart J 2015 Phys. Rev. Appl. 4 064003
[12] Chen Y Z, Pryds N, Kleibeuker J E, Koster G, Sun J R, Stamate E, Shen B G, Rijnders G and Rijnders S 2011 Nano Lett. 11 3774
[13] Herranz G, Sánchez F, Dix N, Scigaj M and Fontcuberta J 2012 Sci. Rep. 2 758
[14] Moetakef P, Cain T A, Ouellette D G, Zhang J Y, Klenov D O, Janotti A, Van de Walle C G, Rajan S, Allen S J and Stemmer S 2011 Appl. Phys. Lett. 99 232116
[15] Perna P, Maccariello D, Radovic M, Scotti di Uccio U, Pallecchi I, Codda M, Marré D, Cantoni C, Gazquez J, Varela M, Pennycook S J and Miletto Granozio F 2010 Appl. Phys. Lett. 97 152111
[16] Chen Y Z, Trier F, Wijnands T, et al. 2015 Nat. Mater. 14 801
[17] Chambers S A, Qiao L, Droubay T C, Kaspar T C, Arey B W and Sushko P V 2011 Phys. Rev. Lett. 107 206802
[18] Colby R, Qiao L, Zhang K H L, Shutthanandan V, Ciston J, Kabius B and Chambers S A 2013 Phys. Rev. B 88 155325
[19] Kumar P, Pal P, Shukla A K, Pulikkotil J J and Dogra A 2015 Phys. Rev. B 91 115127
[20] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[21] Xiao D, Zhu W G, Ran Y, Nagaosa N and Okamoto S 2011 Nat. Commun. 2 596
[22] Kane C J and Mele E J 2005 Phys. Rev. Lett. 95 226801
[23] Liang Q F, Wu L H and Hu X 2013 New J. Phys. 15 063031
[24] Koster G, Kropman B L, Rijnders G J H M, Blank D H A and Rogalla H 1998 Appl. Phys. Lett. 73 2920
[25] Yun K Y, Noda M and Okuyama M 2003 Appl. Phys. Lett. 83 3981
[26] Hong R J, Qi H J, Huang J B, He H B, Fan Z X and Shao J D 2005 Thin Solid Films 473 58
[27] Takizawa M, Tsuda S, Susaki T, Hwang H Y and Fujimori A 2011 Phys. Rev. B 84 245124
[28] Drera G, Salvinelli G, Brinkman A, Huijben M, Koster G, Hilgenkamp H, Rijnders G, Visentin D and Sangaletti L 2013 Phys. Rev. B 87 075435
[29] Koitzsch A, Ocker J, Knupfer M, Dekker M C, Dörr K, Büchner B and Hoffmann P 2011 Phys. Rev. B 84 245121
[30] Qiao L, Droubay T C, Kaspar T C, Sushko P V and Chambers S A 2011 Surf. Sci. 605 1381
[31] Chambers S A, Englehard H M, Shutthanandan V, Zhu Z, Droubay T C, Feng T, Lee H D, Gustafsson T, Garfunkel E, Shah A, Zuo J M and Ramasse Q M 2010 Surf. Sci. Rep. 65 317
[32] Segal Y, J. Ngai J H, Reiner J W, Walker F J and Ahn C H 2009 Phys. Rev. B 80 241107
[33] Bristowe N C, Littlewood P B and Artacho E 2011 Phys. Rev. B 83 205405
[34] Slooten E, Zhong Z, Molegraaf H J A, Eerkes P D, de Jong S, Massee F, van Heumen E, Kruize M K, Wenderich S, Kleibeuker J E, Gorgoi M, Hilgenkamp H, Brinkman A, Huijben M, Rijnders G, Blank D H A, Koster G, Kelly P J and Golden M S 2013 Phys. Rev. B 87 085128
[35] Zhou J, Asmara T C, Yang M, Sawatzky G A, Feng Y P and Rusydi A 2015 Phys. Rev. B 92 125423
[36] Yu L P and Zunger A 2014 Nat. Commun. 5 5118
[37] Yoshimatsu K, Yasuhara R, Kumigashira H and Oshima M 2008 Phys. Rev. Lett. 101 026802
[38] Han Y L, Fang Y W, Yang Z Z, Li C J, He L, Shen S C, Luo Z Z, Qu G L, Xiong C M, Dou R F, Wei X, Gu L, Duan C G and Nie J C 2015 Phys. Rev. B 92 115304
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[5] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[12] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
No Suggested Reading articles found!