Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 044701    DOI: 10.1088/1674-1056/27/4/044701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Oxidation during the production of FGH4095 superalloy powders by electrode induction-melt inert gas atomization

Shan Feng(峰山), Min Xia(夏敏), Chang-Chun Ge(葛昌纯)
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode induction-melt inert gas atomization (EIGA) technique. A continuous and steady-state liquid metal flow is achieved at high-frequency (350 kHz) alternating current and high electric power (100 kW). The superalloy is immersed in a high-frequency induction coil, and the liquid metal falling into a supersonic nozzle is atomized by an Ar gas of high kinetic gas energy. Numerical calculations are performed to optimize the structure parameters for the nozzle tip. The undesired oxidation reaction of alloying elements starts at 1000℃ with the reaction originating from the active sites on the powder surfaces, leading to the formation of oxides, MexOy. The role of active sites and kinetic factors associated with the diffusion of oxygen present in the atomization gas streams are also examined. The observed results reveal that the oxidation process occurring at the surface of the produced powders gradually moves toward the core, and that there exists a clear interface between the product layer and the reactant. The present study lays a theoretical foundation for controlling the oxidation of nickel-based superalloy powders from the powder process step.

Keywords:  electrode induction-melt inert gas atomization (EIGA)      powder metallurgy (P/M)      FGH4095 superalloy powders      supersonic nozzle      oxidation  
Received:  07 September 2017      Revised:  12 December 2017      Accepted manuscript online: 
PACS:  47.45.Ab (Kinetic theory of gases)  
  61.82.Bg (Metals and alloys)  
  68.08.-p (Liquid-solid interfaces)  
  68.35.Fx (Diffusion; interface formation)  
Corresponding Authors:  Min Xia, Chang-Chun Ge      E-mail:  xmdsg@ustb.edu.cn;ccge@mater.ustb.edu.cn

Cite this article: 

Shan Feng(峰山), Min Xia(夏敏), Chang-Chun Ge(葛昌纯) Oxidation during the production of FGH4095 superalloy powders by electrode induction-melt inert gas atomization 2018 Chin. Phys. B 27 044701

[1] Zeoli N, Tabbara H and Gu S 2011 Chem. Eng. Sci. 66 6498
[2] Antony L V M and Reddy R G 2003 JOM 55 14
[3] Belyanchikov L N 2008 Russian Metallurgy 2008 588
[4] Bojarevics V Pericleous K and Cross M 2000 Metallurgical and Materials Transactions B 31 179
[5] Na S, Yoon D, Kim J, Kim H and Kim D 2017 Int. J. Fatigue 101, Part 127
[6] Ning Y Q, Zhou C, Liang H and Fu M W 2016 Mater. Sci. Eng. A 652 84
[7] He G A, Liu F, Si J Y, Yang C and Jiang L 2015 Mater. Design 87 256
[8] Crompton J S and Hertzberg R W 1986 J. Mater. Sci. 21 3445
[9] Ma W B, Liu G Q, Hu B F, Zhang Y W and Liu J T 2013 Mater. Sci. Eng. A 587 313
[10] Franz H, Plochl L and Schimansky F P 2008 Proc. Titanium
[11] Bojarevics V, Roy A and Pericleous K 2011 COMPEL 30 1455
[12] Bernhard M and Geoffrey A M 1998 Metal Powder Report 53 30
[13] Feng S, Xia M and Ge C C 2017 Chin. Phys. B 26 060201
[14] Chang D R, Krueger D D and Sprague R A 1984 Superalloys 1984, Proceedings of the Fifth International Symposium on Superalloys, 1984 Ohio, USA, p. 245
[15] Yang W, Yu K, Yan M and Lai H 1992 Adv. Mater. Proc. 1 339
[16] Wang X F, Zhou X M, Yang J, Zou J W and Wang W X 2013 Mater. Sci. Forum 747 526
[17] Rao G A, Srinivas M and Sarma D S 2006 Mater. Sci. Eng. A 435 84
[18] Coble R L 1978 Powder Metall. Int. 10 128
[1] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[2] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[3] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[4] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[5] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[6] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[7] A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明). Chin. Phys. B, 2021, 30(5): 056102.
[8] Oxidation degree dependent adsorption of ssDNA onto graphene-based surface
Huishu Ma(马慧姝), Jige Chen(陈济舸), Haiping Fang(方海平), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2021, 30(10): 106806.
[9] High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(3): 037301.
[10] Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique
Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程). Chin. Phys. B, 2020, 29(12): 126101.
[11] Interfaces between MoOx and MoX2 (X = S, Se, and Te)
Fengming Chen(陈凤鸣), Jinxin Liu(刘金鑫), Xiaoming Zheng(郑晓明), Longhui Liu(刘龙慧), Haipeng Xie(谢海鹏), Fei Song(宋飞), Yongli Gao(高永立), and Han Huang(黄寒). Chin. Phys. B, 2020, 29(11): 116802.
[12] Nanosheet-structured B4C with high hardness up to 42 GPa
Chang-Chun Wang(王常春), Le-Le Song(宋乐乐). Chin. Phys. B, 2019, 28(6): 066201.
[13] Synthesis and characterization of β-Ga2O3@GaN nanowires
Shuang Wang(王爽), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Li-Ying Zhang(张丽颖), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Bin Liu(刘斌), Peng Chen(陈鹏), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(2): 028104.
[14] Pressure-induced new chemistry
Jianyan Lin(蔺健妍), Xin Du(杜鑫), Guochun Yang(杨国春). Chin. Phys. B, 2019, 28(10): 106106.
[15] Influences on oxidation voltage and holding time on poly(3-methylthiophene) film for electrochromic stability
Bo Zhang(张波), Chen Xu(徐晨), Guo-Yue Xu(徐国跃), Chu-Yang Liu(刘初阳), Hong-Han Bu(卜红寒), Jian-Chao Zhang(张建超). Chin. Phys. B, 2018, 27(12): 127802.
No Suggested Reading articles found!