Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017801    DOI: 10.1088/1674-1056/27/1/017801

A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates

Yuhong Wang(王玉红)1, Mingli Wang(王明利)1, Lin Shen(沈琳)2, Yanying Zhu(朱艳英)1, Xin Sun(孙鑫)1, Guochao Shi(史国超)1, Xiaona Xu(许晓娜)1, Ruifeng Li(李瑞峰)1, Wanli Ma(马万里)3
1 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China;
2 Liren College of Yanshan University, Qinhuangdao 066004, China;
3 Department of Mathematics, NC State University, Raleigh 276968205, USA
Abstract  Noble metal nanorough surfaces that support strong surface-enhanced Raman scattering (SERS) is widely applied in the practical detection of organic molecules. A low-cost, large-area, and environment-friendly SERS-active substrate was acquired by sputtering inexpensive copper (Cu) on natural dragonfly wing (DW) with an easily controlled way of magnetron sputtering. By controlling the sputtering time of the fabrication of Cu on the DW, the performance of the SERS substrates was greatly improved. The SERS-active substrates, obtained at the optimal sputtering time (50 min), showed a low detection limit (10-6M) to 4-aminothiophenol (4-ATP), a high average enhancement factor (EF, 1.98×104), excellent signal uniformity, and good reproducibility. In addition, the results of the 3D finite-difference time-domain (3D-FDTD) simulation illustrated that the SERS-active substrates provided high-density “hot spots”, leading to a large SERS enhancement.
Keywords:  surface-enhanced Raman scattering      dragonfly wing      copper      magnetron sputtering  
Received:  21 May 2017      Revised:  24 September 2017      Published:  05 January 2018
PACS:  78.30.-j (Infrared and Raman spectra)  
  74.25.nd (Raman and optical spectroscopy)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the Youth Fund Project of University Science and Technology Plan of Hebei Provincial Department of Education, China (Grant No. QN2015004) and the Doctoral Fund of Yanshan University, China (Grant No. B924).
Corresponding Authors:  Mingli Wang     E-mail:

Cite this article: 

Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里) A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates 2018 Chin. Phys. B 27 017801

[1] Lv M Y, Teng H Y, Chen Z Y, Zhao Y M, Zhang X, Liu L, Wu Z L, Liu L M and Xu H J 2015 Sens. Actuators B Chem. 209 820
[2] Hao J, Han M J, Han S, Meng X, Su T L and Wang Q K 2015 Environ. Sci. 36 152
[3] Dasary S S, Zones Y K, Barnes S L, Ray P C and Sing A K 2016 Sens. Actuators B Chem. 224 65
[4] Lei O Y, Hu Y W, Zhu L H, Gary J C and Joseph I 2017 Biosens. Bioelectron. 92 755
[5] Liu J, Zhou J, Tang B, Zeng T, Li Y L, Li J L, Ye Y and Wang X G 2016 Appl. Surf. Sci. 386 296
[6] Fang H, Yin H J, Lv M Y, Xu H J, Zhao Y M, Zhang X, Wu Z L, Liu L and Tan T W 2015 Biosens. Bioelectron. 69 71
[7] Liu Y, Zhou H, Hu Z, Yu G, Yang D and Zhao J 2017 Biosens. Bioelec-tron. 94 131
[8] Qu L L, Liu Y Y and He S H 2015 Biosens. Bioelectron. 77 292
[9] Tan Y Y, Yan B, Xue L L, Li Y, Luo X Y and Ji P 2017 Lipids Health Dis. 16 73
[10] Polly L, Francois X N, Fanbin K, Azlin M and Mengshi L 2017 Car-bohydr. Polym. 157 643
[11] Li R P, Yang G H, Yang J L, Han J H, Liu J H and Huang M J 2016 Food Control 68 14
[12] He S, Xie W, Zhang W, Zhang L, Wang Y, Liu X, Liu Y and Du C 2015 Spectrochim. Acta Part A 137 1092
[13] Rajapandiyan P, Tang W L and Yang J 2015 Food Control 56 155
[14] Fang H, Zhang X, Zhang S J, Liu L, Zhao Y M and Xu H J 2015 Sens. Actuators B Chem. 213 452
[15] Qi M, Huang X, Zhou Y, Zhang L, Jin Y, Peng Y, Jiang H and Du S 2016 Food Chem. 197 723
[16] Samir K, Pratibha G and Jitendra P S 2017 Sens. Actuators B. Chem. 241 577
[17] Shao F, Lu Z C, Liu C, Han H Y, Chen K, Li W T, He Q G, Peng H and Chen J N 2014 Acs. Appl. Mater. Interfaces 6 6281
[18] Ward D R, Grady N K, Levin C S, Halas N J, Wu Y, Nordlander P and Natelson D 2007 Nano Lett. 7 1396
[19] Sharma B, Frontiera R R, Henry A I, Ring E and van Duyne R P 2012 Mater. Today 15 16
[20] Kudelskia A, Bukowskaa J, Janik-Czachorb M, Grochalaa W, Szummerc A and Dolatab M 1998 Vib. Spectrosc 16 21
[21] Jiji S G and Gopchandran K G 2017 Spectrochim. Acta Part A 171 499
[22] Kudelski A and Bukowska J 1996 Vib. Spectrosc. 10 335
[23] Wang J, Sun C S, Liu X F, Xin L L and Fang Y 2014 Colloids Surf. A 455 104
[24] Dinish U S, Yaw F C, Agarwal A and Olivo M 2011 Biosens. Bioelec-tron. 26 1987
[25] Wang M L, Zhang C X, Wu Z L, Jing X L and Xu H J 2014 Chin. Phys. B 23 547
[26] Sharma H, Agarwal D C, Shukla A K, Avasthi D K and Vankar V D 2013 Raman Spectrosc. 44 12
[27] Oh Y J and Jeong K H 2012 Adv. Mater. 24 2234
[28] Guo L, Zhang C X, Deng L, Zhang G X and Xu H J 2014 Appl. Phys. 115 213101
[29] Rajabi H and Darvizeh A 2013 Chin. Phys. B 22 738
[30] Chen Y and Fang Y 2008 Spectrochim. Acta Part A 69 733
[31] Lan M M, Li H Q, Wang D, Li Y and Xu G Y 2014 Vacuum 110 87
[32] Wang X B, Song C, Geng K W, Zeng F and Pan F 2007 Appl. Surf. Sci. 253 6905
[33] Voevodin A A, Rebholz C, Schneider J M, Stevenson P and Matthews A 1995 Surf. Coat. Technol. 73 185
[34] Sharma H S S, Carmichael E and Call D M 2016 Vib. Spectrosc. 83 159
[35] Li H, Jiang J, Wang Z, Wang X, Liu X, Yan Y and Li C 2017 Colloid Interface Sci. 501 86
[36] Hao Z, Mansuer M, Guo Y, Zhu Z and Wang X 2016 Talanta 146 533
[37] Wang Y L, Chen H J, Dong S J and Wang E K 2006 Chem. Phys. 124 163
[38] Tsai Y C, Hsu P C, Liu Y W and Wu T M 2009 Sens. Actuators B Chem. 138 5
[39] Wei G, Wang L, Liu Z G, Song Y H, Sun L L, Yang T and Li Z 2005 Phys. Chem. B 109 23941
[40] Hong G S, Li C and Qi L M 2010 Adv. Funct. Mater. 20 3774
[41] De A F, Gentile F and Mecarini F 2011 Nat. Photon. 5 682
[42] Yang J L, Li R P, Han J H and Huang M J 2016 Chin. Phys. B 25 083301
[43] García-Vidal F J and Pendry J B 1996 Phys. Rev. Lett. 77 1163
[1] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[2] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[3] Investigation of copper sulfate pentahydrate dehydration by terahertz time-domain spectroscopy
Yuan-Yuan Ma(马媛媛), Hao-Chong Huang(黄昊翀), Si-Bo Hao(郝思博), Wei-Chong Tang(汤伟冲), Zhi-Yuan Zheng(郑志远), Zi-Li Zhang(张自力). Chin. Phys. B, 2019, 28(6): 060702.
[4] Controllable fabrication of self-organized nano-multilayers in copper-carbon films
Wei-Qi Wang(王伟奇), Li Ji(吉利), Hong-Xuan Li(李红轩), Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), Jian-Min Chen(陈建敏). Chin. Phys. B, 2019, 28(3): 036802.
[5] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[6] Highly sensitive and stable SERS probes of alternately deposited Ag and Au layers on 3D SiO2 nanogrids for detection of trace mercury ions
Yi Tian(田毅), Han-Fu Wang(王汉夫), Lan-Qin Yan(闫兰琴), Xian-Feng Zhang(张先锋), Attia Falak, Pei-Pei Chen(陈佩佩), Feng-Liang Dong(董凤良), Lian-Feng Sun(孙连峰), Wei-Guo Chu(禇卫国). Chin. Phys. B, 2018, 27(7): 077406.
[7] Self-assembled monolayer modified copper(I) iodide hole transport layer for efficient polymer solar cells
Yuancong Zhong(钟远聪), Qilun Zhang(张琪伦), You Wei(魏优), Qi Li(李琦), Yong Zhang(章勇). Chin. Phys. B, 2018, 27(7): 078802.
[8] Quantitative and sensitive detection of prohibited fish drugs by surface-enhanced Raman scattering
Shi-Chao Lin(林世超), Xin Zhang(张鑫), Wei-Chen Zhao(赵伟臣), Zhao-Yang Chen(陈朝阳), Pan Du(杜攀), Yong-Mei Zhao(赵永梅), Zheng-Long Wu(吴正龙), Hai-Jun Xu(许海军). Chin. Phys. B, 2018, 27(2): 028707.
[9] Combinatorial synthesis and high-throughput characterization of copper-oxide superconductors
J Wu, A T Bollinger, X He, I Božović. Chin. Phys. B, 2018, 27(11): 118102.
[10] Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1-xSnx films on Si substrate
H Mahmodi, M R Hashim. Chin. Phys. B, 2017, 26(5): 056801.
[11] Low-temperature phase transformation of CZTS thin films
Wei Zhao(赵蔚), Lin-Yuan Du(杜霖元), Lin-Lin Liu(刘林林), Ya-Li Sun(孙亚利), Zhi-Wei Liu(柳志伟), Xiao-Yun Teng(滕晓云), Juan Xie(谢娟), Kuang Liu(刘匡), Wei Yu(于威), Guang-Sheng Fu(傅广生), Chao Gao(高超). Chin. Phys. B, 2017, 26(4): 046402.
[12] Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field
Chun-Zhen Fan(范春珍), Shuang-Mei Zhu(朱双美), Hao-Yi Xin(辛昊毅). Chin. Phys. B, 2017, 26(2): 023301.
[13] Field emission properties of a-C and a-C:H films deposited on silicon surfaces modified with nickel nanoparticles
Jin-Long Jiang(姜金龙), Yu-Bao Wang(王玉宝), Qiong Wang(王琼), Hao Huang(黄浩), Zhi-Qiang Wei(魏智强), Jun-Ying Hao(郝俊英). Chin. Phys. B, 2016, 25(4): 048101.
[14] Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas
Yan Zhao(赵艳), Wei Gao(高伟), Bo Xu(徐博), Ying-Ai Li(李英爱), Hong-Dong Li(李红东), Guang-Rui Gu(顾广瑞), Hong Yin(殷红). Chin. Phys. B, 2016, 25(10): 106801.
[15] Effects of N2/O2 flow rate on the surface properties and biocompatibility of nano-structured TiOxNy thin films prepared by high vacuum magnetron sputtering
Sehrish Saleem, R. Ahmad, Uzma Ikhlaq, R. Ayub, Jin Wei Hong, Xu Rui Zhen, Li Peng Hui, Khizra Abbas, Paul K. Chu. Chin. Phys. B, 2015, 24(7): 075202.
No Suggested Reading articles found!