Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 124201    DOI: 10.1088/1674-1056/26/12/124201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Error analysis and Stokes parameter measurement of rotating quarter-wave plate polarimeter

Dan-Dan Zhi(支丹丹)1,2, Jian-Jun Li(李健军)1, Dong-Yang Gao(高冬阳)1,2, Wen-Chao Zhai(翟文超)1, Xiong-Hao Huang(黄雄豪)1,2, Xiao-Bing Zheng(郑小兵)1
1. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Key Laboratory of Optical Calibration and Characterization, Hefei 230031, China;
2. University of Science and Technology of China, Hefei 230026, China
Abstract  In this paper, we present a simple Stokes parameter measurement method for a rotating quarter-wave plate polarimeter. This method is used to construct a model to describe the principle of how the magnitudes of errors influence the deviation of the output light Stokes parameter, on the basis of accuracy analysis of the retardance error of the quarter-wave plate, the misalignment of the analyzing polarizer, and the phase shift of the measured signals, which will help us to determine the magnitudes of these errors and then to acquire the correct results of Stokes parameters. The method is validated by the experiments on left-handed circularly polarized and linear horizontal polarization beams. With the improved method, the maximum measurement deviations of Stokes parameters for these two different polarized states are reduced from 2.72% to 2.68%, and from 3.83% to 1.06% respectively. Our results demonstrate that the proposed method can be used as a promising approach to Stokes parameter measurement for a rotating quarter-wave plate polarimeter.
Keywords:  polarization      stokes parameter detection      polarimeter  
Received:  10 June 2017      Revised:  19 July 2017      Accepted manuscript online: 
PACS:  42.25.-p (Wave optics)  
  42.25.Ja (Polarization)  
  42.79.Pw (Imaging detectors and sensors)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA123702) and the National Natural Science Foundation of China (Grant No. 61505222).
Corresponding Authors:  Xiao-Bing Zheng     E-mail:  xbzheng@aiofm.ac.cn

Cite this article: 

Dan-Dan Zhi(支丹丹), Jian-Jun Li(李健军), Dong-Yang Gao(高冬阳), Wen-Chao Zhai(翟文超), Xiong-Hao Huang(黄雄豪), Xiao-Bing Zheng(郑小兵) Error analysis and Stokes parameter measurement of rotating quarter-wave plate polarimeter 2017 Chin. Phys. B 26 124201

[1] Greenfield N J 2006 Nat. Protoc. 1 2876
[2] Peng X B, Komatsu N, Bhattacharya S, Shimawaki T, Aonuma S, Kimura T and Osuka A 2007 Nat. Nanotech. 2 361
[3] Yu N F, Wang Q J, Pflügl C, Diehl L, Capasso F, Edamura T, Furuta S, Yamanishi M, and Kan H 2009 Appl. Phys. Lett. 94 151101
[4] Lu S J, Zhang C M and Han J 2015 Appl. Opt. 54 4214
[5] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, and Rasing T 2007 Phys. Rev. Lett. 99 047601
[6] Hohlfeld J, Stanciu C D and Rebei A 2009 Appl. Phys. Lett. 94 047601
[7] Van der Laan J D, Scrymgeour D A, Kemme S A and Dereniak E L 2014 Proc. SPIE. 9099 909908
[8] Boulbry B, Ramella-Roman J C and Germer T A 2007 Appl. Opt. 46 8533
[9] Flueraru C, Latoui S, Besse J and Legendre P 2008 Transactions on Instrumentation and Measurement 57 731
[10] Lizana A, Estévez I, Turpin A 2015 Appl. Opt. 54 8758
[11] Liao Y B 2003 Polarization optics (Beijing:Science Press) p. 240 ISBN:7030111591
[12] Leonardo G and Matteo B 2007 Appl. Opt. 46 2638
[13] D. H. Goldstein and R. A. Chipman 1990 J. Opt. Soc. Am. A 7 693
[14] Gentile T R, Houston J M and Cromer C L 1996 Appl. Opt. 35 4392
[15] Öǧüt E, Kiziltas G and Sendur K 2010 Appl. Phys. B 99 67
[16] Giudicotti L and Brombin M 2007 Appl. Opt. 46 2638
[17] Zhi D D, Li J J, Gao D Y, Zhai W C, Huang X H and Zheng X B 2016 Spectrosc. Spect. Anal. 36 2655
[18] Ambirajan A and Look Jr D C 1995 Opt. Eng. 34 1651
[19] Goldstein D 2003 Polarized Light, 2nd edn. (New York:Marcel Dekker) p. 135 ISBN:0-8247-4053-X
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[3] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[4] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[7] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[10] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[13] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
No Suggested Reading articles found!