Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 114302    DOI: 10.1088/1674-1056/26/11/114302
REVIEW Prev   Next  

Review on second-harmonic generation of ultrasonic guided waves in solid media (I):Theoretical analyses

Wei-Bin Li(李卫彬)1, Ming-Xi Deng(邓明晰)2, Yan-Xun Xiang(项延训)3
1. School of Aerospace Engineering, Xiamen University, Xiamen 361005, China;
2. Department of Physics, Logistics Engineering University, Chongqing 401331, China;
3. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
Abstract  

Considering the high sensitivity of the nonlinear ultrasonic measurement technique and great advantages of the guided wave testing method, the use of nonlinear ultrasonic guided waves provides a promising means for evaluating and characterizing the hidden and/or inaccessible damage/degradation in solid media. Increasing attention on the development of the testing method based on nonlinear ultrasonic guided waves is largely attributed to the theoretical advances of nonlinear guided waves propagation in solid media. One of the typical acoustic nonlinear responses is the generation of second harmonics that can be used to effectively evaluate damage/degradation in materials/structures. In this paper, the theoretical progress of second-harmonic generation (SHG) of ultrasonic guided wave propagation in solid media is reviewed. The advances and developments of theoretical investigations on the effect of SHG of ultrasonic guided wave propagation in different structures are addressed. Some obscure understandings and the ideas in dispute are also discussed.

Keywords:  second-harmonic generation (SHG)      ultrasonic guided waves      cumulative growth effect      phase and group velocity matching  
Received:  03 July 2017      Revised:  31 July 2017      Published:  05 November 2017
PACS:  43.20.Mv (Waveguides, wave propagation in tubes and ducts)  
  43.25.+y (Nonlinear acoustics)  
  43.35.-c (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: 

Project supported by National Natural Science Foundation of China (Grant Nos. 11474361, 51405405, and 11622430).

Corresponding Authors:  Ming-Xi Deng, Yan-Xun Xiang     E-mail:  dengmx65@yahoo.com;yxxiang@ecust.edu.cn

Cite this article: 

Wei-Bin Li(李卫彬), Ming-Xi Deng(邓明晰), Yan-Xun Xiang(项延训) Review on second-harmonic generation of ultrasonic guided waves in solid media (I):Theoretical analyses 2017 Chin. Phys. B 26 114302

[1] Achenbach J D 1973 Wave Propagation in Elastic Solids (Amsterdam:North-Holland Press)
[2] Rose J L 1999 Ultrasonic Waves in Solid Media(New York:Cambridge University Press)
[3] Auld B A 1990 Acoustic Fields and Waves in Solids(Malabar:Kreiger Press)
[4] Shui Y and Solodov I 1988 J. Appl. Phys. 64 6155
[5] Ginsberg J H 1979 J. Acoust. Soc. Am. 65 1127
[6] Zhou S and Shui Y 1992 J. Appl. Phys. 72 5070
[7] Korneeva V and Demčenko A 2014 J. Acoust. Soc. Am. 135 591
[8] Nagy P B 1998 Ultrasonics 36 375
[9] Cantrell J H and Yost W T 2001 Int. J. Fatigue 23 487
[10] Jhang K Y 2000 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47 540
[11] Kim J Y, Jacobs L J, Qu J and Littles J W 2006 J. Appl. Phys. 99 124913
[12] Li W, Cho Y, Lee J and Achenbach J D 2013 Exp. Mech. 53 775
[13] Li W, Cho Y and Hyun S 2012 Int. J. Precis. Eng. Man. 13 935
[14] Xiang Y X, Zhu W J, Deng M X and Xuan F Z 2016 Chin. Phys. B 25 024303
[15] Xiang Y X, Deng M X, Liu C J and Xuan F Z 2015 J. Appl. Phys. 117 214903
[16] Xiang Y X, Deng M X and Xuan F Z 2014 J. Nondestruct. Eval. 33 279
[17] Buck O 1976 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 23 346
[18] Deng M 2000 J. Sound Vib. 230 507
[19] Deng M 2005 Acta Acustica 30 0371(in Chinese)
[20] Rose J L 2004 Key Eng. Mater. 270 14
[21] Love M, Alleyne D N and Cawley P 1998 Ultrasonics 36 147
[22] Rose J L 2002 J. Press. Vessel Tech. 124 273
[23] Cho Y 2000 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47 591
[24] Murnaghan F D 1951 Finite Deformation of an Elastic Solid(Wiley)
[25] Landau L D and Lifschitz E M 1956 Theory of Elasticity(Oxford:Pregamon Press)
[26] He X, Shui Y, Mao Y W and Jiang W 1996 Appl. Phys. Lett. 69 614
[27] Deng M 1996 Acta Acustica 21 429(in Chinese)
[28] Deng M 1997 Acta Acustica 22 182(in Chinese)
[29] Deng M 1999 J. Appl. Phys. 85 3051
[30] Deng M 1996 Jpn. J. Appl. Phys. 35 4004
[31] Deng M 2003 J. Appl. Phys. 94 4152
[32] de Lima W J N and Hamilton M F 2003 J. Sound Vib. 265 819
[33] Mao Y, Shui Y, Jiang W, Lu Z and Wu W 1989 Appl. Phys. Lett. 55 2394
[34] Zhou S and Shui Y 1992 J. Appl. Phys. 72 5070
[35] Deng M 1997 J. Appl. Phys. 82 1026
[36] Deng M 2008 Chin. J. Acoust. 27 1
[37] Li W and Cho Y 2015 Sensor. Actuat. A-Phys. 232 251
[38] Deng M 1998 J. Appl. Phys. 84 3500
[39] Deng M and Liu Z 2002 Appl. Phys. Lett. 81 1916
[40] Liu Y, Chillara V K, Lissenden C J and Rose J L 2013 J. Appl. Phys. 114 114908
[41] Lissenden C J, Liu Y, Choi G W and Yao X 2013 J. Nondestruct. Eval. 33 178
[42] Li W, Choi J and Cho Y 2015 Phys. Proce. 70 451
[43] Deng M and Xiang Y X 2013 J. Appl. Phys. 106 024902
[44] Srivastava A and di Scalea F L 2009 J. Sound Vib. 323 932
[45] ChillaraV K and Lissenden C J 2012 J. Appl. Phys. 111 124909
[46] Liu Y, ChillaraV K and Lissenden C J 2013 J. Sound Vib. 332 4517
[47] Cho Y 2012 J. Nondestruct. Eval. 31 324
[48] Matsuda N and Biwa S 2011 J. Appl. Phys. 109 094903
[49] Deng M 2005 NDT&E Inter. 38 85
[50] Deng M 2006 Appl. Phys. Lett. 88 221902
[51] Xiang Y X, Deng M and Xuan F Z 2009 J. Appl. Phys. 106 024902
[52] Deng M 2000 Acustica Acta Acoustica 86 239
[53] Deng M 2007 J. Sound Vib. 308 201
[54] Deng M 2008 Appl. Phys. Lett. 92 111910
[55] Zhao J, ChillaraV K, Ren B, Cho H, Qiu J and Lissenden C J 2016 J. Appl. Phys. 119 064902
[56] Li W, Cho Y and Achenbach J D 2012 Smart Mater. Struct. 21 085019
[57] Deng M and Xiang Y X 2015 Ultrasonics 61 121
[58] Mcmahon D H 1968 J. Acoust. Soc. Am. 44 1007
[59] Ljamov V E 1972 J. Acoust. Soc. Am. 52 199
[60] de Lima W J N and Hamilton M F 2005 Wave Motion 41 1
[61] Srivastava A and di Scalea F L 2010 J. Sound Vib. 329 1499
[62] Srivastava A, Salamone S and di Scalea F L 2010 J. Acoust. Soc. Am. 127 2790
[63] Nucera C and di Scalea F L 2014 J. Acoust. Soc. Am. 136 2561
[64] Liu Y, Khajeh E, Lissenden C J and Rose J L 2013 J. Acoust. Soc. Am. 133 2541
[65] Li W and Cho Y 2014 Exp. Mech. 54 1309
[66] Li W, Deng M and Cho Y 2016 J. Comput. Acoust. 24 1650011
[67] Zuo P, Zhou Y and Fan Z 2016 AIP Adv. 6 075207
[68] Gao G, Deng M and Li M 2015 Acta Phys. Sin. 64 184303(in Chinese)
[69] Deng M, Gao G and Li M 2015 Chin. Phys. Lett. 32 124305
[70] Deng M, Gao G, Xiang Y X and Li M 2017 Ultrasonics 75 209
[71] Li W, Cho Y and Achenbach J D 2010 Rev. Prog. Quant. Nondestruct. Eval. 1581 662
[72] Viktorov I A 1967 Rayleigh and Lamb Waves Physical Theory and Application(New York:Plenum Press)
[73] Müller M F, Kim J Y, Qu J and Jacobs L J 2010 J. Acoust. Soc. Am. 127 2141
[74] Matlack K H, Kim J Y, Jacobs L J and Qu J 2011 J. Appl. Phys. 109 014905
[75] Chillara V and Lissenden C J 2013 Ultrasonics 53 862
[76] Bermes C, Kim J Y, Qu J and Jacobs L J 2008 Mech. Syst. Sig. Process. 22 638
[77] Pruell C, Kim J Y, Qu J and Jacobs L J 2009 Smart Mater. Struct. 18 035003
[78] Pruell C, Kim J Y, Qu J and Jacobs L J 2008 NDT&E Inter. 42 199
[79] Deng M, Xiang Y and Liu L 2011 J. Appl. Phys. 109 113525
[80] Deng M and Xiang Y 2010 Chin. Phys. B 19 114302
[81] Xiang Y, Zhu W, Deng M, Xuan F and Liu C 2016 Europhys. Lett. 116 34001
[1] Enhancement effect of cumulative second-harmonic generation by closed propagation feature of circumferential guided waves
Guang-Jian Gao(高广健), Ming-Xi Deng(邓明晰), Ning Hu(胡宁), Yan-Xun Xiang(项延训). Chin. Phys. B, 2020, 29(2): 024301.
[2] Response features of nonlinear circumferential guided wave on early damage in inner layer of a composite circular tube
Ming-Liang Li(李明亮), Liang-Bing Liu(刘良兵), Guang-Jian Gao(高广健), Ming-Xi Deng(邓明晰), Ning Hu(胡宁), Yan-Xun Xiang(项延训), Wu-Jun Zhu(朱武军). Chin. Phys. B, 2019, 28(4): 044301.
No Suggested Reading articles found!