Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 110502    DOI: 10.1088/1674-1056/26/11/110502
GENERAL Prev   Next  

Multi-scroll hidden attractors and multi-wing hidden attractors in a 5-dimensional memristive system

Xiaoyu Hu(胡晓宇), Chongxin Liu(刘崇新), Ling Liu(刘凌), Yapeng Yao(姚亚鹏), Guangchao Zheng(郑广超)
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  A novel 5-dimensional (5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multi-wing hidden attractors can be observed on different phase planes. The dynamical system has multiple lines of equilibria or no equilibrium when the system parameters are appropriately selected, and the multi-scroll hidden attractors and multi-wing hidden attractors have nothing to do with the system equilibria. Particularly, the numbers of multi-scroll hidden attractors and multi-wing hidden attractors are sensitive to the transient simulation time and the initial values. Dynamical properties of the system, such as phase plane, time series, frequency spectra, Lyapunov exponent, and Poincaré map, are studied in detail. In addition, a state feedback controller is designed to select multiple hidden attractors within a long enough simulation time. Finally, an electronic circuit is realized in Pspice, and the experimental results are in agreement with the numerical ones.
Keywords:  multi-scroll hidden attractors      multi-wing hidden attractors      multiple lines equilibria      no equilibrium  
Received:  24 April 2017      Revised:  01 August 2017      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51177117 and 51307130).
Corresponding Authors:  Xiaoyu Hu     E-mail:  huxiaoyucool@163.com

Cite this article: 

Xiaoyu Hu(胡晓宇), Chongxin Liu(刘崇新), Ling Liu(刘凌), Yapeng Yao(姚亚鹏), Guangchao Zheng(郑广超) Multi-scroll hidden attractors and multi-wing hidden attractors in a 5-dimensional memristive system 2017 Chin. Phys. B 26 110502

[1] Han F, Hu J, Yu X and Wang Y 2007 Applied Mathematics and Computation 185 931
[2] Gámez-Guzmán L, Cruz-Hernández C, López-Gutiérrez R M and García-Guerrero E E 2009 Commun. Nonlinear Sci. Numer. Simul. 14 2765
[3] Ben Slimane N, Bouallegue K and Machhout M 2017 Nonlinear Dyn.
[4] Orue A B, Alvarez G, Pastor G, Romera M, Montoya F and Li S 2010 Commun. Nonlinear Sci. Numer. Simul. 15 3471
[5] Yu S, Lü J and Chen G 2007 Phys. Lett. A 364 244
[6] Dadras S and Momeni H R 2009 Phys. Lett. A 373 3637
[7] Bao B, Wang X and Xu J 2010 2010 International Works hop on Chaos-Fractals Theories and Applications(IWCFTA) 211
[8] Xu F and Yu P 2010 Journal of Mathematical Analysis& Applications 362 252
[9] Tahir F R, Ali R S, Pham V T, Buscarino A, Frasca M and Fortuna L 2016 Nonlinear Dyn. 85 2665
[10] Tang W K S, Zhong G Q, Chen G and Man K F 2001 IEEE Transactions on Circuits& Systems I:Fundamental Theory& Applications 48 1369
[11] Zhang C and Yu S 2010 Phys. Lett. A 374 3029
[12] Yu S, Lu J, Chen G and Yu X 2011 IEEE Transactions on Circuits& Systems Ⅱ:Express Briefs 58 314
[13] Li F and Yao C 2016 Nonlinear Dyn. 84 2305
[14] Ma J, Wu X, Chu R and Zhang L 2014 Nonlinear Dyn. 76 1951
[15] Yalçin M E 2007 Chaos Soliton. Fract. 34 1659
[16] Bao B, Zhou G, Xu J and Liu Z 2010 Int. J. Bifurcation Chaos 20 2203
[17] Ahmad W M 2005 Chaos Soliton. Fract. 25 727
[18] Deng W and Lü J 2007 Phys. Lett. A 369 438
[19] Cang S, Wu A, Wang Z, Xue W and Chen Z 2015 Nonlinear Dyn. 83 1987
[20] Zhou L, Wang C and Zhou L 2016 Nonlinear Dyn. 85 2653
[21] Wang C, Xia H and Zhou L 2017 Int. J. Bifurcation Chaos 27 1750091
[22] Zhou L, Wang C and Zhou L 2017 Int. J. Bifurcation Chaos 27 1750027
[23] Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N V, Leonov G A and Prasad A 2016 Physics Reports 637 1
[24] Leonov G A and Kuznetsov N V 2013 Int. J. Bifurcation Chaos 23 1330002
[25] Kuznetsov N V 2016 AETA 2015:Recent Advances in Electrical Engineering and Related Sciences 371 13
[26] Wang X and Chen G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1264
[27] Molaie M, Jafari S, Sprott J C and Golpayegani S M R H 2013 Int. J. Bifurcation Chaos 23 1350188
[28] Wei Z 2011 Phys. Lett. A 376 102
[29] Jafari S, Sprott J C and Hashemi Golpayegani S M R 2013 Phys. Lett. A 377 699
[30] Jafari S and Sprott J C 2013 Chaos Soliton. Fract. 57 79
[31] Tahir F R, Jafari S, Pham V T, Volos C and Wang X 2015 Int. J. Bifurcation Chaos 25 1550056
[32] Zhou L, Wang C and Zhou L 2017 International Journal of Circuit Theory and Applications
[33] Hu X, Liu C, Liu L, Ni J and Li S 2016 Nonlinear Dyn. 86 1725
[34] Jafari S, Pham V T and Kapitaniak T 2016 Int. J. Bifurcation Chaos 26 1650031
[35] Chua L 1971 IEEE Transactions on Circuit Theory 18 507
[36] Li C and Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450131
[37] Li C and Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450034
[38] Sharma P R, Shrimali M D, Prasad A, Kuznetsov N V and Leonov G A 2015 The European Physical Journal Special Topics 224 1485
[1] Dynamics of high-frequency modulated waves in a nonlinear dissipative continuous bi-inductance network
S M Ngounou and F B Pelap. Chin. Phys. B, 2021, 30(6): 060504.
[2] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[3] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[4] Time-varying coupling-induced logical stochastic resonance in a periodically driven coupled bistable system
Yuangen Yao(姚元根). Chin. Phys. B, 2021, 30(6): 060503.
[5] Generating multi-layer nested chaotic attractor and its FPGA implementation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), Mengjiao Wang(王梦蛟), and Zhijun Li(李志军). Chin. Phys. B, 2021, 30(6): 060509.
[6] Behaviors of thermalization for the Fermi-Pasta-Ulam-Tsingou system with small number of particles
Zhenjun Zhang(张振俊), Jing Kang(康静), and Wen Wen(文文). Chin. Phys. B, 2021, 30(6): 060505.
[7] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[8] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[9] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
[10] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[11] Design and FPGA implementation of multi-wing chaotic switched systems based on a quadratic transformation
Qing-Yu Shi(石擎宇), Xia Huang(黄霞), Fang Yuan(袁方), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(2): 020507.
[12] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[13] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[14] A phononic rectifier based on carbon schwarzite host-guest system
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz. Chin. Phys. B, 2020, 29(12): 124402.
[15] Novel two-directional grid multi-scroll chaotic attractors based on the Jerk system
Peng-Fei Ding(丁鹏飞), Xiao-Yi Feng(冯晓毅)†, and Cheng-Mao Wu(吴成茂). Chin. Phys. B, 2020, 29(10): 108202.
No Suggested Reading articles found!