Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 104203    DOI: 10.1088/1674-1056/26/10/104203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wavefront analysis for plenoptic camera imaging

Yin-Sen Luan(栾银森)1,2,3,4, Bing Xu(许冰)1,2, Ping Yang(杨平)1,2, Guo-Mao Tang(汤国茂)1,2
1. Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China;
2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
Abstract  The plenoptic camera is a single lens stereo camera which can retrieve the direction of light rays while detecting their intensity distribution. In this paper, to reveal more truths of plenoptic camera imaging, we present the wavefront analysis for the plenoptic camera imaging from the angle of physical optics but not from the ray tracing model of geometric optics. Specifically, the wavefront imaging model of a plenoptic camera is analyzed and simulated by scalar diffraction theory and the depth estimation is redescribed based on physical optics. We simulate a set of raw plenoptic images of an object scene, thereby validating the analysis and derivations and the difference between the imaging analysis methods based on geometric optics and physical optics are also shown in simulations.
Keywords:  plenoptic camera      wavefront analysis      scalar diffraction theory  
Received:  04 April 2017      Revised:  12 May 2017      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
  42.30.Va (Image forming and processing)  
  42.30.Tz (Computer vision; robotic vision)  
  42.25.-p (Wave optics)  
Fund: Project supported by the Innovation Fund of Chinese Academy of Sciences (Grant No. CXJJ-6M208).
Corresponding Authors:  Bing Xu     E-mail:  bing_xu_ioe@163.com

Cite this article: 

Yin-Sen Luan(栾银森), Bing Xu(许冰), Ping Yang(杨平), Guo-Mao Tang(汤国茂) Wavefront analysis for plenoptic camera imaging 2017 Chin. Phys. B 26 104203

[1] Ng R, Levoy M, Brédif M, Duval G, Horowitz M and Hanrahan P 2005 Comput. Sci. Technical Report CSTR 2 11
[2] Levoy M, Ng R, Adams A, Footer M and Horowitz M 2006 ACM Trans. Graph. 25 924
[3] Lumsdaine A and Georgiev T 2009 in Proceedings of Eurographics p. 5
[4] Dansereau D G, Pizarro O and Williams S B 2013 in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p. 1027
[5] Perwass C and Wietzke L 2012 Proc. SPIE 8291 829108
[6] Michael L and Movshon J A 1991 Computational Models of Visual Processing (Cambridge:MIT Press) p. 3
[7] Adelson E H and Wang J Y A 1992 IEEE Trans. Pattern Anal. Mach. Intell. 14 99
[8] Huang L, Bian Q, Zhou C L, Li T H and Gong M L 2016 Chin. Phys. B 25 070701
[9] Luan Y S, He X, Xu B, Yang P and Tang G M 2006 Opt. Eng. 55 043111
[10] Wu C, Ko J and Davis C C 2015 J. Opt. Soc. Am. A 32 964
[11] Hartley R I and Sturm P 1997 Comput. Vision Image Understanding 68 146
[1] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[2] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[3] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[4] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[5] An apodized cubic phase mask used in a wavefront coding system to extend the depth of field
Lina Zhu(朱丽娜), Fei Li(李飞), Zeyu Huang(黄泽宇), and Tingyu Zhao(赵廷玉). Chin. Phys. B, 2022, 31(5): 054217.
[6] Deep learning facilitated whole live cell fast super-resolution imaging
Yun-Qing Tang(唐云青), Cai-Wei Zhou(周才微), Hui-Wen Hao(蒿慧文), and Yu-Jie Sun(孙育杰). Chin. Phys. B, 2022, 31(4): 048705.
[7] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[8] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[9] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[10] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[11] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[12] Single pixel imaging based on semi-continuous wavelet transform
Chao Gao(高超), Xiaoqian Wang(王晓茜), Shuang Wang(王爽), Lidan Gou(苟立丹), Yuling Feng(冯玉玲), Guangyong Jin(金光勇), and Zhihai Yao(姚治海). Chin. Phys. B, 2021, 30(7): 074201.
[13] Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking
Zhe Hu(胡哲), Wen-Qiang Hua(滑文强), and Jie Wang(王 劼). Chin. Phys. B, 2021, 30(6): 064201.
[14] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[15] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
No Suggested Reading articles found!