Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 094201    DOI: 10.1088/1674-1056/26/9/094201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A linear-to-circular polarization converter based on I-shapedcircular frequency selective surfaces

Jia-Liang Wu(吴家梁)1, Bao-Qin Lin(林宝勤)1, Xin-Yu Da(达新宇)1, Kai Wu(吴凯)2
1 Information and Navigation College, Air Force Engineering University, Xi'an 710077, China;
2 Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
Abstract  In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on I-shaped circular structure resonant is presented and investigated. Numerical simulations exhibit that when the normal y-polarized waves impinge on this device propagating towards +z direction, the two orthogonal components of the transmitted waves have a 90° phase difference as well as the nearly equal amplitudes at the resonant frequency of 7.04 GHz, which means that the left-hand circular polarization is realized in transmission. For validating the proposed design, a prototype which consists of 25×25 elements has been designed, manufactured and measured. The measured results are in good agreement with the simulated ones, showing that the polarization conversion transmission is over -3 dB in the frequency range of 5.22-8.08 GHz and the axial ratio is below 3 dB from 5.86 GHz to 7.34 GHz.
Keywords:  polarization converter      metasurface      frequency selective surface  
Received:  19 November 2016      Revised:  20 April 2017      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  73.20.-r (Electron states at surfaces and interfaces)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).
Corresponding Authors:  Jia-Liang Wu     E-mail:  wujia2538@126.com

Cite this article: 

Jia-Liang Wu(吴家梁), Bao-Qin Lin(林宝勤), Xin-Yu Da(达新宇), Kai Wu(吴凯) A linear-to-circular polarization converter based on I-shapedcircular frequency selective surfaces 2017 Chin. Phys. B 26 094201

[1] Li T J, Liang J G, Li H P and Liu Y Q 2016 Chin. Phys. B 25 094101
[2] Li W H, Zhang J Q, Qu S B, Shen Y, Yu J B, Fan Y and Zhang A X 2016 Acta Phys. Sin. 65 024101 (in Chinese)
[3] Cong L L, Fu Q, Cao X Y, Gao J, Song T, Li W Q, Zhao Y and Zheng Y J 2015 Acta Phys. Sin. 64 224219 (in Chinese)
[4] Zhang H L, Hu B J and Zhang X Y 2012 Chin. Phys. B 21 027701
[5] Alqadi M K and Alzoubi F Y 2014 Chin. Phys. B 23 087506
[6] Guo W J, Chen Z G, Cai L B, Wang G Q and Cheng G X 2015 Acta Phys. Sin. 64 070702 (in Chinese)
[7] Li L Y, Wang J, Du H L, Wang J F and Qu S B 2015 Chin. Phys. B 24 064201
[8] Heng H and Yang L 2014 Chin. Phys. B 23 068101
[9] Han J F, Cao X Y, Gao J, Li S J and Zhang C 2016 Acta Phys. Sin. 65 044201 (in Chinese)
[10] Kiani G and Dyadyuk V 2012 Antennas and Propagation Society International Symposium (APSURSI), July, 2012, Chicago, USA, p. 1
[11] Sohail I, Ranga Y, Esselle K and Hay S 2013 European Conference on Antennas and Propagation (EuCAP'13), April, 2013, Goteborg, Sweden, p. 2141
[12] Euler M, Fusco V, Cahill R and Dickie R 2010 Microw. Antennas Propag. 4 1764
[13] Euler M, Fusco V, Cahill R and Dickie R 2010 IEEE Trans. Antennas Propag. 58 2457
[14] Wang J, Wu W and Shen Z X 2014 Antennas and Propagation Society International Symposium (APSURSI), July, 2014, Memphis, USA, p. 1
[15] Yan S and Vandenbosch G A E 2013 Appl. Phys. Lett. 102 103503
[16] Letizia M, Fuchs B, Zorraquino C, Zurcher J F and Mosig J R 2012 Prog. Electromagn. Res. B 45 309
[17] Joyal M and Laurin J 2012 IEEE Trans. Antennas Propag. 60 3007
[18] Biscarini M, Sardi G M, Maritini E, Caminita F and Maci S 2013 European Conference on Antennas and Propagation (EuCAP'13), April, 2013, Goteborg, Sweden, p. 1
[19] Martinez-Lopez L, Rodriguez-Cuevas J, Martinez-Lopez J I and Martynyuk A E 2014 IEEE Antennas Wireless Propag. Lett. 13 153
[20] Abbaspour-Tamijani A, Schoenlinner B, Sarabandi K and Rebeiz G M 2003 Antennas and Propagation Society International Symposium 2 817
[21] Tamijani A A, Sarabandi K and Rebeiz G M 2004 IEEE Trans. Microw. Theory Tech. 52 1781
[22] Cui T, Huang J Z, Liu X and Zeng G H 2016 Chin. Phys. B 25 020301
[23] Zhou H, Qu S B, Xu Z, Wang J F, Ma H, Peng W D, Lin B Q and Bai P 2011 IEEE Antennas Wireless Propag. Lett. 10 507
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[3] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[9] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[10] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[11] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[12] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[15] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
No Suggested Reading articles found!