Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074101    DOI: 10.1088/1674-1056/26/7/074101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Asymmetrical mirror optimization for a 140 GHz TE22, 6 quasi-optical mode converter system

Dong Xia(夏冬)1, Ming Jin(金铭)1,2, Ming Bai(白明)1
1 School of Electronics and Information Engineering, Beihang University, Beijing 100191, China;
2 Institute of Remote Sensing and Digital Earth, State Key Laboratory of Remote Sensing, Beijing 100101, China
Abstract  We introduce an asymmetrical mirror design to a 140 GHz TE22,6 quasi-optical (QO) mode converter system to correct the asymmetry of the beam's field distribution caused by the Denisov launcher. By such optimization, the output beam with better symmetrical distribution is obtained at the system's output window. Based on the calculated results, the QO mode converter system's performance is already satisfying without iterative phase correction. Scalar and vector correlation coefficients between the output beam and the fundamental Gaussian beam are respectively 98.4% and 93.0%, while the total power transmission efficiency of the converter system is 94.4%. The assistance of optical ray tracing to the design of such QO mode converters is introduced and discussed as well.
Keywords:  asymmetrical mirror design      optical ray tracing      quasi-optical mode converter  
Received:  11 November 2016      Revised:  29 March 2017      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.15.Dp (Wave fronts and ray tracing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61671032).
Corresponding Authors:  Ming Bai     E-mail:  mbai@buaa.edu.cn

Cite this article: 

Dong Xia(夏冬), Ming Jin(金铭), Ming Bai(白明) Asymmetrical mirror optimization for a 140 GHz TE22, 6 quasi-optical mode converter system 2017 Chin. Phys. B 26 074101

[1] Nusinovich G S, Thumm M K A and Petelin M I 2014 J. Infrared Millim. Terahertz Waves. 35 325
[2] Fu W, Guan X, Chen C and Li X 2014 IEEE Trans. Electron Devices 61 2531
[3] Cairns R A and Phelps A D R 1997 Generation and Application of High Power Microwaves (New York:CRC Press) pp. 121–171
[4] Denisov G G, Kuftin A N, Malygin V I, Venediktov N P, Vinogradov D V and Zapevalov V E 1992 Int. J. electronics. 72 1079
[5] Liu D, Wang W, Zhuang Q and Yan Y 2015 IEEE Electron Device Lett. 36 195
[6] Rock B Y and Fliflet A W 2013 IEEE Trans. Terahertz Sci. Tech. 3 641
[7] Bogdashov A A and Denisov G G 2004 Radiophys. Quantum Electron. 47 283
[8] Prinz H O, Arnold A, Dammertz G and Thumm M 2007 IEEE Trans. Microw. Theory Tech. 55 1697
[9] Katsenel B Z and Semenov V V 1967 Radio Eng. Electron. Phys. 12 223
[10] Liu J, Jin J, Thumm M, Jelonnek J, Li H and Zhao Q 2013 IEEE Trans. Plasma Sci. 41 2489
[11] Wu Z W, Li H, Xu J H, Li T M and Li J Y 2014 Chin. Phys. B. 23 059201
[12] Thumm M, Yang X, Arnold A, Dammertz G, Michel G, Pretterebner J and Wagner D 2005 IEEE Trans. Electron Devices. 52 818
[13] Wang W, Liu D, Qiao S and Liu S 2014 IEEE Trans. Plasma Sci. 42 346
[14] Qu J, Xue C, Pan W, Chen X, Yu C, Shi M and Chen S 2012 High Power Laser & Particle Beams. 24 157
[15] Jin J, Piosczyk B, Thumm M and Rzesnicki T 2006 IEEE Trans. Plasma Sci. 34 1508
[1] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[2] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[3] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[4] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[5] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[6] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[7] Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
Huan Jiang(蒋欢), Xiang-Yu Cao(曹祥玉), Tao Liu(刘涛), Liaori Jidi(吉地辽日), and Sijia Li(李思佳). Chin. Phys. B, 2022, 31(10): 104101.
[8] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[9] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[10] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[11] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[12] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[13] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[14] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!