Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 066801    DOI: 10.1088/1674-1056/26/6/066801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene via van der Pauw geometry

Rui-Song Ma(马瑞松)1,2,3, Qing Huan(郇庆)1,2,3, Liang-Mei Wu(吴良妹)1,2,3, Jia-Hao Yan(严佳浩)1,2,3, Yu-Yang Zhang(张余洋)2, Li-Hong Bao(鲍丽宏)1,2,3, Yun-Qi Liu(刘云圻)4, Shi-Xuan Du(杜世萱)1,2,3, Hong-Jun Gao(高鸿钧)1,2,3
1 Institute of Physics & School of Physical Sciences, University of Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China;
4 Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We report the direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene on SiO2/Si via van der Pauw geometry by using a home-designed four-probe scanning tunneling microscope (4P-STM). The gate-tunable conductivity and mobility are extracted from standard van der Pauw resistance measurements where the four STM probes contact the four peripheries of hexagonal graphene flakes, respectively. The high homogeneity of transport properties of the single-crystalline graphene flake is confirmed by comparing the extracted conductivities and mobilities from three setups with different geometry factors. Our studies provide a reliable solution for directly evaluating the entire electrical properties of graphene in a non-invasive way and could be extended to characterizing other two-dimensional materials.

Keywords:  graphene conductivity      mobility      four-probe measurement      van der Pauw method  
Received:  14 March 2017      Revised:  10 April 2017      Accepted manuscript online: 
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  72.80.Vp (Electronic transport in graphene)  
Fund: 

Project supported by the Science Fund from the Ministry of Science and Technology of China (Grant No. 2013CBA01600), the National Key Research & Development Project of China (Grant No. 2016YFA0202300), the National Natural Science Foundation of China (Grant Nos. 61474141, 61674170, 61335006, 61390501, 51325204, and 51210003), the Chinese Academy of Sciences (CAS), and Youth Innovation Promotion Association of CAS (Grant No. 20150005).

Corresponding Authors:  Li-Hong Bao, Hong-Jun Gao     E-mail:  lhbao@iphy.ac.cn;hjgao@iphy.ac.cn

Cite this article: 

Rui-Song Ma(马瑞松), Qing Huan(郇庆), Liang-Mei Wu(吴良妹), Jia-Hao Yan(严佳浩), Yu-Yang Zhang(张余洋), Li-Hong Bao(鲍丽宏), Yun-Qi Liu(刘云圻), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene via van der Pauw geometry 2017 Chin. Phys. B 26 066801

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[4] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[5] Schwierz F 2010 Nat. Nanotechnol. 5 487
[6] Yin Z Y, Zhu J X, He Q Y, Cao X H, Tan C L, Chen H Y, Yan Q Y and Zhang H 2014 Adv. Energy Mater. 4 1300574
[7] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[8] Guo W, Jing F, Xiao J, Zhou C, Lin Y W and Wang S 2016 Adv. Mater. 28 3152
[9] Boyd D A, Lin W H, Hsu C C, Teague M L, Chen C C, Lo Y Y, Chan W Y, Su W B, Cheng T C, Chang C S, Wu C I and Yeh N C 2015 Nat. Commun. 6 6620
[10] Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T and Geim A K 2011 Nano Lett. 11 2396
[11] Du J, Li J Y, Kang N, Lin L, Peng H L, Liu Z F and Xu H Q 2016 Nanotechnology 27 245204
[12] Miccoli I, Edler F, Pfnur H and Tegenkamp C 2015 J. Phys.: Condens. Matter 27 223201
[13] Van der Pauw L J 1958 Philips Technol. Rev. 20 220
[14] Van der Pauw L J 1958 Philips Res. Rep. 13 1
[15] Dorgan V E, Bae M H and Pop E 2010 Appl. Phys. Lett. 97 082112
[16] Lin X, He X B, Lu J L, Gao L, Huan Q, Shi D X and Gao H J 2005 Chin. Phys. 14 1536
[17] Zou Q, Liu M, Wang G Q, Lu H L, Yang T Z, Guo H M, Ma C R, Xu X, Zhang M H, Jiang J C, Meletis E I, Lin Y, Gao H J and Chen C L 2014 ACS Appl. Mater. Interfaces 6 6704
[18] Guo Q, Qin Z, Huang M, Mantsevich V N and Cao G 2016 Chin. Phys. B 25 036801
[19] Nakayama T, Kubo O, Shingaya Y, Higuchi S, Hasegawa T, Jiang C S, Okuda T, Kuwahara Y, Takami K and Aono M 2012 Adv. Mater. 24 1675
[20] Higuchi S, Kubo O, Kuramochi H, Aono M, Nakayama T 2011 Nanotechnology 22 285205
[21] Clark K W, Zhang X G, Vlassiouk I V, He G W, Feenstra R M and Li A P 2013 ACS Nano 7 7956
[22] Zhang Y F, Gao T, Gao Y B, Xie S B, Ji Q Q, Yan K, Peng H L and Liu Z F 2011 ACS Nano 5 4014
[23] Blake P, Hill E W, Neto A H C, Novoselov K S, Jiang D, Yang R, Booth T J and Geim A K 2007 Appl. Phys. Lett. 91 063124
[24] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[25] Jiang Z, Zhang Y, Tan Y W, Stormer H L and Kim P 2007 Solid State Commun. 143 14
[26] Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonnell S, Colombo L, Vogel E M, Ruoff R S and Wallace R M 2011 Appl. Phys. Lett. 99 122108
[27] Tien D H, Park J Y, Kim K B, Lee N and Seo Y 2016 Sci. Rep. 6 25050
[28] Choi M S, Lee S H and Yoo W J 2011 J. Appl. Phys. 110 073305
[29] Li X L, Han W P, Wu J B, Qiao X F, Zhang J and Tan P H 2017 Adv. Funct. Mater., January, 2017
[30] Vasic B, Zurutuza A and Gajic R 2016 Carbon 102 304
[31] Zhu W J, Low T, Perebeinos V, Bol A A, Zhu Y, Yan H G, Tersoff J and Avouris P 2012 Nano Lett. 12 3431
[32] Wu Q, Jung S J, Jang S K, Lee J, Jeon I, Suh H, Kim Y H, Lee Y H, Lee S and Song Y J 2015 Nanoscale 7 10357
[33] Subhedar K M, Sharma I and Dhakate S R 2015 Phys. Chem. Chem. Phys. 17 22304
[34] Karamat S, Sonuşen S, Dede M, Uysalli Y, Özgönül E and Oral A 2016 J. Mater. Res. 31 46
[35] Zeng J, Liu J, Zhang S X, Zhai P F, Yao H J, Duan J L, Guo H, Hou M D and Sun Y M 2015 Chin. Phys. B 24 086103
[36] Nagashio K, Nishimura T, Kita K and Toriumi A 2010 Jpn. J. Appl. Phys. 49 051304
[37] Fang X Y, Yu X X, Zheng H M, Jin H B, Wang L and Cao M S 2015 Phys. Lett. A 379 2245
[1] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[4] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[5] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[6] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[7] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[8] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[9] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[10] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[11] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[12] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[13] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[14] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[15] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
No Suggested Reading articles found!