Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 064201    DOI: 10.1088/1674-1056/26/6/064201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Difference scattering field properties between periodic defect particles and three-dimensional slightly rough optical surface

Cheng-Xian Ge(葛城显)1, Zhen-Sen Wu(吴振森)1, Jing Bai(白靖)1, Lei Gong(巩蕾)2
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 School of Photoelectric Engineering, Xi'an Technological University, Xi'an 710021, China
Abstract  

Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Carlo method is used to solve the problem of the optical surface with roughness in the proposed scheme. Moreover, the defect particles are observed as periodic particles for a more complex situation. In order to obtain the scattering contribution of defects inside the optical surface, a difference radar cross section is added into the model to analyze the selected calculations on the effects of numbers, separation distances, different depths and different materials of defects. The effects of different incident angles are also discussed. The numerical results are analyzed in detail to demonstrate the best position to find the defects in the optical surface by detecting in steps of a fixed degree for the incident angle.

Keywords:  light scattering      difference scattering field      periodic particles      rough optical surface  
Received:  07 December 2016      Revised:  21 January 2017      Published:  05 June 2017
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Dd (Wave propagation in random media)  
  02.70.Bf (Finite-difference methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61308071, 61601355, and 61571355) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2016JM6011).

Corresponding Authors:  Zhen-Sen Wu     E-mail:  wuzhs@mail.xidian.edu.cn

Cite this article: 

Cheng-Xian Ge(葛城显), Zhen-Sen Wu(吴振森), Jing Bai(白靖), Lei Gong(巩蕾) Difference scattering field properties between periodic defect particles and three-dimensional slightly rough optical surface 2017 Chin. Phys. B 26 064201

[1] Gong L, Wu Z S and Gao M 2012 Acta Opt. Sin. 32 0629003 (in Chinese)
[2] He X, Wang G, Zhang H and Ma P 2016 Chin. Phys. B 25 048104
[3] Zheng G L, Zhang H, Ye W J, Zhang Z D, Song H W and Xuan L 2016 Chin. Phys. B 25 036101
[4] Lu P F, Wu L Y, Yang Y, Wang W Z, Zhang C F, Yang C H, Su R and Chen J 2016 Chin. Phys. B 25 086801
[5] Sun M J, Liu T, Cheng X Z, Chen D Y, Yan F G and Feng N Z 2016 Acta Phys. Sin. 65 167802 (in Chinese)
[6] Ren X C and Guo L X 2008 Chin. Phys. B 17 2956
[7] Wang T, Tong C M, Li X M and Li C Z 2016 Acta Phys. Sin. 65 070301 (in Chinese)
[8] Gong L, Wu Z S, Li Z J and Zhang G 2015 J. Quantum Spectrosc. Radiat. Transfer 162 184
[9] Tian A L, Wang H and Wang C H 2013 Chin. J. Lasers 40 0908006 (in Chinese)
[10] Karlsson A, He J, Swartling J and Andersson-Engels S 2005 IEEE Trans. Biomed. Eng. 52 13
[11] Karamehmedović M, Schuh R, Schmidt V, Wriedt T, Matyssek C, Hergert W, Stalmashonak A, Seifert G and Stranik O 2011 Opt. Express 19 8939
[12] Albella P, Garciacueto B, González F, Moreno F, Wu P C, Kim T H, Brown A, Yang Y, Everitt H O and Videen G 2011 Nano Lett. 11 3531
[13] Eremina E, Eremin Y and Wriedt T. 2011 J. Mod. Opt. 58 384
[14] Grishina N, Eremina E, Eremin Y and Wriedt T 2011 J. Quantum Spectrosc. Radiat. Transfer 112 1825
[15] Eremina E 2009 J. Quantum Spectrosc. Radiat. Transfer 110 1526
[16] Johnson J T and Burkholder R J 2001 IEEE Trans. Geosci. Remote Sens. 39 1214
[17] El-Shenawee M 2004 IEEE Trans. Geosci. Remote Sens. 42 67
[18] Hu B and Chew W C 2001 IEEE Trans. Geosci. Remote Sens. 39 1028
[19] Fung A K, Shah M R and Tjuatja S 1994 IEEE Trans. Geosci. Remote Sens. 32 986
[20] Moss C D, Teixeira F L, Yang Y E and Kong J A 2002 IEEE Trans. Geosci. Remote Sens. 40 178
[21] Li C, He S Y, Zhu G Q, Zhang Z, Deng F S and Xiao B X 2012 Appl. Comput. Electrom. 27 956
[22] Wang Y H, Zhang Y M, He M X and Guo L X 2008 Chin. Phys. B 17 3696
[23] Li J, Guo L X, Zeng H and Han X B 2009 Chin. Phys. B 18 2757
[24] Xu R W, Guo L X and Wang R 2014 Chin. Phys. B 23 114101
[25] Wang A Q, Guo L X and Chai C 2011 Chin. Phys. B 20 050201
[26] Ye H X and Jin Y Q 2008 Acta Phys. Sin. 57 839 (in Chinese)
[27] Tian W, Ren X C and Guo L X 2015 Acta Phys. Sin. 64 174101 (in Chinese)
[28] Gong L, Wu Z S and Pan Y Q 2014 Acta Photon. Sin. 43 831003
[29] Liu C Y, Liu T A and Fu W E 2010 Opt. Laser Technol. 42 902
[30] Gong L, Wu Z S, Dai S Y and Li Z J 2015 Acta Opt. Sin. 35 0829001 (in Chinese)
[31] Johnson J T 2002 IEEE T. Antenn. Propag. 50 1361
[32] Kuga Y and Phu P 1996 J. Electromagnet. Wave. Appl. 10 451
[33] Luo W, Zhang M, Zhou P and Yin H C 2010 Chin. Phys. B 19 084102
[34] Tabatabaeenejad A, Duan X and Moghaddam M 2013 IEEE Trans. Geosci. Remote Sens. 51 3943
[1] Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique
Shuai Hu(胡帅), Taichang Gao(高太长), Hao Li(李浩), Lei Liu(刘磊), Ming Chen(陈鸣), Bo Yang(杨波). Chin. Phys. B, 2018, 27(5): 054215.
[2] Theoretical studies on particle shape classification based on simultaneous small forward angle light scattering and aerodynamic sizing
Jin-Bi Zhang(张金碧), Lei Ding(丁蕾), Ying-Ping Wang(王颖萍), Li Zhang(张莉), Jin-Lei Wu(吴金雷), Hai-Yang Zheng(郑海洋), Li Fang(方黎). Chin. Phys. B, 2016, 25(3): 034201.
[3] A new kind of superimposing morphology for enhancing the light scattering in thin film silicon solar cells:Combining random and periodic structure
Huang Zhen-Hua, Zhang Jian-Jun, Ni Jian, Wang Hao, Zhao Ying. Chin. Phys. B, 2014, 23(8): 084205.
[4] Unidirectional emissions from dielectric photonic circuits decorated with plasmonic phased antenna arrays
Ding Wei, Chen Yu-Hui, Li Zhi-Yuan. Chin. Phys. B, 2014, 23(3): 037301.
[5] Dynamical Casimir effect in superradiant light scattering by Bose–Einstein condensate in an optomechanical cavity
Sonam Mahajan, Neha Aggarwal, Aranya B Bhattacherjee, ManMohan. Chin. Phys. B, 2014, 23(2): 020315.
[6] Light scattering effect of submicro-textured Ag/Al composite films prepared at lower substrate temperatures
Tang Ping-Lin, Wu Yong-Gang, Tong Guang-De, Xia Zi-Huan, Liu Ren-Chen, Liang Zhao-Ming, Zhou Jian. Chin. Phys. B, 2013, 22(7): 078801.
[7] Measurements of NO2 mixing ratios with topographic target light scattering-differential optical absorption spectroscopy system and comparisons to point monitoring technique
Wang Yang, Li Ang, Xie Pin-Hua, Zeng Yi, Wang Rui-Bin, Chen Hao, Pei Xian, Liu Jian-Guo, and Liu Wen-Qing. Chin. Phys. B, 2012, 21(11): 114211.
[8] Investigation on the scattering effect of ceramic Nd:YAG
Li Cheng-Ming, Zong Nan, Gao Hong-Wei, Xu Zu-Yan, Liu Wen-Bin, Pan Yu-Bai, Feng Xi-Qi. Chin. Phys. B, 2010, 19(6): 064202.
[9] Light scattering by a spherical particle with multiple densely packed inclusions
Sun Xian-Ming, Wang Hai-Hua, Liu Wan-Qiang, Shen Jin. Chin. Phys. B, 2009, 18(3): 1040-1044.
[10] Light scattering of nanocrystalline TiO2 film used in dye-sensitized solar cells
Xiong Bi-Tao, Zhou Bao-Xue, Bai Jing, Zheng Qing, Liu Yan-Biao, Cai Wei-Min, Cai Jun. Chin. Phys. B, 2008, 17(10): 3713-3719.
No Suggested Reading articles found!