Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 063601    DOI: 10.1088/1674-1056/26/6/063601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Structural optimization of Au-Pd bimetallic nanoparticles with improved particle swarm optimization method

Gui-Fang Shao(邵桂芳), Meng Zhu(朱梦), Ya-Li Shangguan(上官亚力), Wen-Ran Li(李文然), Can Zhang(张灿), Wei-Wei Wang(王玮玮), Ling Li(李玲)
Department of Automation, Xiamen University, Xiamen 361005, China
Abstract  Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles (NPs) on their structures, a fundamental understanding of their structural characteristics is crucial for their syntheses and wide applications. In this article, a systematical atomic-level investigation of Au-Pd bimetallic NPs is conducted by using the improved particle swarm optimization (IPSO) with quantum correction Sutton-Chen potentials (Q-SC) at different Au/Pd ratios and different sizes. In the IPSO, the simulated annealing is introduced into the classical particle swarm optimization (PSO) to improve the effectiveness and reliability. In addition, the influences of initial structure, particle size and composition on structural stability and structural features are also studied. The simulation results reveal that the initial structures have little effects on the stable structures, but influence the converging rate greatly, and the convergence rate of the mixing initial structure is clearly faster than those of the core-shell and phase structures. We find that the Au-Pd NPs prefer the structures with Au-rich in the outer layers while Pd-rich in the inner ones. Especially, when the Au/Pd ratio is 6:4, the structure of the nanoparticle (NP) presents a standardized PdcoreAushell structure.
Keywords:  bimetallic nanoparticles      stable structures      particle swarm optimization (PSO)      simulated annealing  
Received:  26 December 2016      Revised:  02 March 2017      Published:  05 June 2017
PACS:  36.40.-c (Atomic and molecular clusters)  
  52.65.Pp (Monte Carlo methods)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474234 and 61403318) and the Fundamental Research Funds for the Central Universities of China (Grant No. 20720160085).
Corresponding Authors:  Gui-Fang Shao     E-mail:  gfshao@xmu.edu.cn

Cite this article: 

Gui-Fang Shao(邵桂芳), Meng Zhu(朱梦), Ya-Li Shangguan(上官亚力), Wen-Ran Li(李文然), Can Zhang(张灿), Wei-Wei Wang(王玮玮), Ling Li(李玲) Structural optimization of Au-Pd bimetallic nanoparticles with improved particle swarm optimization method 2017 Chin. Phys. B 26 063601

[1] Ismail R andJohnston R L 2010 Phys. Chem. Chem. Phys. 12 8607
[2] Shao G F, Tu N N, Liu T D, Xu L Y and Wen Y H 2015 Physica E 70 11
[3] Huang R, Wen Y H, Shao G F, Zhu Z Z and Sun S G 2014 RSC Adv. 4 7528
[4] Adams B D and Chen A 2011 Mater. Tody 14 282
[5] Noh S and Jun H S 2016 RSC Adv. 6 84334
[6] Wei X, Yang X F, Wang A Q, Li L, Liu X Y, Zhang T, Mou C Y and Li J 2012 J. Phys. Chem. C 116 6222
[7] Wong M S, Alvarez P J J, Fang Y L, Akcin N, Nutt M O, Miller J T and Heck K N 2009 J. Chem. Technol. Biotechnol. 84 158
[8] Shao M W, Wang H, Zhang M L, Ma D D D and Lee S T 2015 Appl. Phys. Lett. 64 243110
[9] Shao G F, Zheng W X, Tu N N, Liu T D and Wen Y H 2015 Acta Phys. Sin. 64 013602 (in Chinese)
[10] Wang D S and Li Y D 2011 Adv. Mater. 23 1044
[11] Balerna A, Evangelisti C, Schiavi E, Vitulli G, Bertinetti L, Martra G and Mobilio S 2013 15$th International Conference on X-ray Absorption Fine Structure, Beijing, July 22-28, 2012, 430 012052
[12] Ding Y, Fan F R, Tian Z Q and Wang Z L J 2010 J. Am. Chen. Soc. 132 12480
[13] Marx S and Baiker A 2009 J. Phys. Chem. C 113 6191
[14] Pretzer L A, Heck K N, Kim S S, Fang Y L, Zhao Z, Guo N, Wu T P, Miller J T and Wong M S 2016 Catalysis Today 264 31
[15] Lu C L, Prasad K S, Wu H L, Ho J A and Huang M H 2010 J. Am. Chem. Soc. 132 14546
[16] Bruma A, Ismail R, Paz-Borbon L O, Arslan H, Barcar G, Fortunelli A, Li Z Y and Johnston J L 2013 Nanoscale 5 646
[17] Liu T D, Zheng J W, Shao G F, Fan T E and Wen Y H 2015 Chin. Phys. B 24 033601
[18] Shao G F, Wang T N, Liu T D, Chen J R, Zheng J W and Wen Y H 2015 Comput. Phys. Commun. 186 11
[19] Oh J S, Nam H S, Choi J H and Lee S C 2013 International Conference on Mathematical Modelling in Physical Sciences, Budapest, September 3-7, 2012, 410 012084
[20] Johnston R L 2003 RSC Adv. 22 4193
[21] Chen Z H, Jiang X W, Li J B and Li S S 2013 J. Chem. Phys. 138 214303
[22] Deng L, Deng H Q, Xiao S F, Tang J F and Hu W Y 2013 RSC Adv. 162 293
[23] Lu X Z, Shao G F, Xu L Y, Liu T D and Wen Y H 2016 Chin. Phys. B 25 053601
[24] Liu T D, Chen J R, Hong W P, Shao G F, Wang T N, Zheng J W and Wen Y H 2013 Acta Phys. Sin. 62 193601 (in Chinese)
[25] Tang J 2010 Computer Technology and Development 20 213 (in Chinese)
[26] Tanweer M R, Sure S and Sundararajan N 2015 Information Sciences 294 182
[27] Wang Z G, Huang R and Wen Y H 2012 Acta Phys. Sin. 61 166102 (in Chinese)
[1] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[2] Particle swarm optimization and its application to the design of a compact tunable guided-mode resonant filter
Dan-Yan Wang(王丹燕), Qing-Kang Wang(王庆康). Chin. Phys. B, 2018, 27(3): 037801.
[3] Ranking important nodes in complex networks by simulated annealing
Yu Sun(孙昱), Pei-Yang Yao(姚佩阳), Lu-Jun Wan(万路军), Jian Shen(申健), Yun Zhong(钟赟). Chin. Phys. B, 2017, 26(2): 020201.
[4] Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm
Xin-Ze Lu(陆欣泽), Gui-Fang Shao(邵桂芳), Liang-You Xu(许两有), Tun-Dong Liu(刘暾东), Yu-Hua Wen(文玉华). Chin. Phys. B, 2016, 25(5): 053601.
[5] Remote sensing of atmospheric duct parameters using simulated annealing
Zhao Xiao-Feng, Huang Si-Xun, Xiang Jie, Shi Wei-Lai. Chin. Phys. B, 2011, 20(9): 099201.
[6] Memoryless cooperative graph search based on the simulated annealing algorithm
Hou Jian, Yan Gang-Feng, Fan Zhen. Chin. Phys. B, 2011, 20(4): 048103.
[7] Numerical and experimental study on coherent beam combining of fibre amplifiers using simulated annealing algorithm
Zhou Pu, Ma Yan-Xing, Wang Xiao-Lin, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin. Chin. Phys. B, 2010, 19(2): 024207.
[8] The design of a photonic crystal filter in the terahertz range
Zhao Xing-Xing, Zhu Qiao-Fen, Zhang Yan. Chin. Phys. B, 2009, 18(7): 2864-2867.
[9] Design of phase plates for shaping partially coherent beams by simulated annealing
Li Jian-Long, Lü Bai-Da. Chin. Phys. B, 2008, 17(5): 1840-1844.
[10] Discrete channel modelling based on genetic algorithm and simulated annealing for training hidden Markov model
Zhao Zhi-Jin, Zheng Shi-Lian, Xu Chun-Yun, Kong Xian-Zheng. Chin. Phys. B, 2007, 16(6): 1619-1623.
[11] Effects of charge on the structures and spin moments of Ni13 cluster
Ma Qing-Min, Wang Jing, Li You-Cheng, Xie Zun, Liu Ying. Chin. Phys. B, 2007, 16(12): 3637-3641.
[12] DESIGNING A DIFFRACTIVE OPTICAL ELEMENT FOR CONTROLLING THE BEAM PROFILE IN A THREE-DIMENSIONAL SPACE USING THE SIMULATED ANNEALING ALGORITHM
Liang Wen-xi, Zhang Jing-juan, Lü Jun-feng, Liao Rui. Chin. Phys. B, 2001, 10(12): 1129-1135.
No Suggested Reading articles found!