Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 058402    DOI: 10.1088/1674-1056/26/5/058402
RAPID COMMUNICATION Prev   Next  

High quality factor superconducting coplanar waveguide fabricated with TiN

Qiang Liu(刘强)1, Guang-Ming Xue(薛光明)2, Xin-Sheng Tan(谭新生)1, Hai-Feng Yu(于海峰)1,3, Yang Yu(于扬)1,3
1 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;
2 Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
3 Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

We fabricated TiN coplanar waveguides using standard lithography techniques followed by ICP etch. In order to achieve high quality factor, we investigated the film growth by choosing different deposition conditions for various substrates. Quality factors of waveguide resonators were measured at 20 mK in both high and low microwave power limits. An inner quality factor of several million was achieved at high power limit for a predominantly (200)-oriented TiN film which was grown on HF cleaned silicon wafer. A quality factor of larger than one million was achieved at high power limit for TiN film grown on sapphire.

Keywords:  TiN film      superconducting coplanar waveguide      quality factor  
Received:  16 February 2017      Accepted manuscript online: 
PACS:  84.40.Az (Waveguides, transmission lines, striplines)  
  85.25.Am (Superconducting device characterization, design, and modeling)  
Fund: 

Project supported by the the NKRDP of China (Grant No. 2016YFA0301802) and the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11504165, 11474152, and 61521001).

Corresponding Authors:  Hai-Feng Yu, Yang Yu     E-mail:  hfyu@nju.edu.cn;yuyang@nju.edu.cn

Cite this article: 

Qiang Liu(刘强), Guang-Ming Xue(薛光明), Xin-Sheng Tan(谭新生), Hai-Feng Yu(于海峰), Yang Yu(于扬) High quality factor superconducting coplanar waveguide fabricated with TiN 2017 Chin. Phys. B 26 058402

[1] van Loo A F, Fedorov A, Lalumiere K, Sanders B C, Blais A and Wallraff A 2013 Science 342 1494
[2] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[3] Córcoles A D, Magesan E, Srinivasan S J, Cross A W, Steffen M, Gambetta J M and Chow J M 2015 Nat. Commun. 6 6979
[4] Billangeon P M, Tsai J S and Nakamura Y 2015 Phys. Rev. B 91 094517
[5] Barends R, Shabani A, Lamata L, et al. 2016 Nature 534 222
[6] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[7] Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[8] Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H and Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501
[9] Leghtas Z, Touzard S, Pop I M, Kou A, Vlastakis B, Petrenko A, Sliwa K M, Narla A, Shankar S, Hatridge M J, Reagor M, Frunzio L, Schoelkopf R J, Mirrahimi M and Devoret M H 2015 Science 347 853
[10] Chow J M, Gambetta J M, Magesan E, Abraham D W, Cross A W, Johnson B R, Masluk N A, Ryan C A, Smolin J A, Srinivasan S J and Steffen M 2014 Nat. Commun. 5 4015
[11] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[12] Vissers M R, Gao J, Wisbey D S, Hite D A, Tsuei C C, Córcoles A D, Steffen M and Pappas D P 2010 Appl. Phys. Lett. 97 232509
[13] Wang C, Axline C, Gao Y Y, Brecht T, Chu Y, Frunzio L, Devoret M H and Schoelkopf R J 2015 Appl. Phys. Lett. 107 162601
[14] Wisbey D S, Gao J, Vissers M R, da Silva F C S, Kline J S, Vale L and Pappas D P 2010 J. Appl. Phys. 108 093918
[15] Quintana C M, Megrant A, Chen Z, et al. 2014 Appl. Phys. Lett. 105 062601
[16] Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, O'Connell A D, Sank D, Weides M, Cleland A N and Martinis J M 2009 Appl. Phys. Lett. 95 233508
[17] Sandberg M, Vissers M R, Kline J S, Weides M, Gao J, Wisbey D S and Pappas D P 2012 Appl. Phys. Lett. 100 262605
[18] Bruno A, de Lange G, Asaad S, van der Enden K L, Langford N K and DiCarlo L 2015 Appl. Phys. Lett. 106 182601
[19] Chang J B, Vissers M R, Córcoles A D, Sandberg M, Gao J, Abraham D W, Chow J M, Gambetta J M, Beth R M, Keefe G A, Steffen M and Pappas D P 2013 Appl. Phys. Lett. 103 012602
[20] Sears A P, Petrenko A, Catelani G, Sun L, Paik H, Kirchmair G, Frunzio L, Glazman L I, Girvin S M and Schoelkopf R J 2012 Phys. Rev. B 86 180504
[21] Rigetti C, Gambetta J M, Poletto S, Plourde B L T, Chow J M, Córcoles A D, Smolin J A, Merkel S T, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2012 Phys. Rev. B 86 100506
[1] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[2] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[3] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[4] Analysis of iris-loaded resonance cavity in miniaturized maser
Zu-Gen Guo(郭祖根), Yong Zhang(张勇), Tao Tang(唐涛), Zhan-Liang Wang(王战亮), Yu-Bin Gong(宫玉彬), Fei Xiao(肖飞), Hua-Rong Gong(巩华荣). Chin. Phys. B, 2020, 29(5): 050601.
[5] High quality NbTiN films fabrication and rapid thermal annealing investigation
Huan Ge(葛欢), Yi-Rong Jin(金贻荣), Xiao-Hui Song(宋小会). Chin. Phys. B, 2019, 28(7): 077402.
[6] Coupled resonator-induced transparency on a three-ring resonator
Xinquan Jiao(焦新泉), Haobo Yu(于皓博), Miao Yu(于淼), Chenyang Xue(薛晨阳), Yongfeng Ren(任勇峰). Chin. Phys. B, 2018, 27(7): 074212.
[7] Fabrication of Al air-bridge on coplanar waveguide
Zhen-Chuan Jin(金震川), Hai-Teng Wu(吴海腾), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(10): 100310.
[8] Silica-based microcavity fabricated by wet etching
H Long(龙浩), W Yang(杨文), L Y Ying(应磊莹), B P Zhang(张保平). Chin. Phys. B, 2017, 26(5): 054211.
[9] Microwave interrogation cavity for the rubidium space cold atom clock
Wei Ren(任伟), Yuan-Ci Gao(高源慈), Tang Li(李唐), De-Sheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(6): 060601.
[10] Resonance-mode effect on piezoelectric microcantilever performance in air, with a focus on the torsional modes
Qiu Hua-Cheng (邱华诚), Dara Feili, Wu Xue-Zhong (吴学忠), Helmut Seidel. Chin. Phys. B, 2014, 23(2): 027701.
[11] Mode stability analysis in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain
Luo Ji-Run (罗积润), Cui Jian (崔健), Zhu Min (朱敏), Guo Wei (郭炜). Chin. Phys. B, 2013, 22(6): 067803.
[12] Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits
Xiong Kang(熊康), Xiao Xi(肖希), Hu Ying-Tao(胡应涛), Li Zhi-Yong(李智勇), Chu Tao(储涛), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中) . Chin. Phys. B, 2012, 21(7): 074203.
[13] Design, fabrication and characterization of a high-performance microring resonator in silicon-on-insulator
Huang Qing-Zhong(黄庆忠), Yu Jin-Zhong(余金中), Chen Shao-Wu(陈少武), Xu Xue-Jun(徐学俊), Han Wei-Hua(韩伟华), and Fan Zhong-Chao(樊中朝) . Chin. Phys. B, 2008, 17(7): 2562-2566.
No Suggested Reading articles found!