Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054302    DOI: 10.1088/1674-1056/26/5/054302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Noninvasive treatment efficacy monitoring and dose control for high-intensity focused ultrasound therapy using relative electrical impedance variation

Huidan Su(宿慧丹)1, Gepu Guo(郭各朴)1, Qingyu Ma(马青玉)1, Juan Tu(屠娟)2, Dong Zhang(章东)2
1 Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 Laboratory of Modern Acoustics of Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  

As an effective therapeutic modality, high-intensity focused ultrasound (HIFU) can destroy tumour tissues by thermocoagulation with less metastasis, but it is still limited by inaccurate non-invasive temperature monitoring and efficacy evaluation. A model of electrical impedance measurement during HIFU therapy was established using the temperature-impedance relationship. Based on the simulations of acoustic pressure, temperature, and electrical conductivity, the impedance of the phantom was calculated and experimentally demonstrated for different values of acoustic power values and treatment time. We proved that the relative impedance variation (RIV) increases linearly with the increasing treatment time at a fixed acoustic power, and the relative impedance variation rate shows a linear relationship with the acoustic power. The RIV and treatment time required for HIFU treatment efficacy are inversely proportional to the acoustic power and the square of acoustic power, respectively. The favourable results suggest that RIV can be used as an efficient indicator for noninvasive temperature monitoring and efficacy evaluation and may provide new strategy for accurate dose control of HIFU therapy.

Keywords:  high-intensity focused ultrasound (HIFU) therapy      relative electrical impedance variation      temperature-impedance relation      efficacy evaluation  
Received:  31 October 2016      Revised:  13 January 2017      Published:  05 May 2017
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  87.50.Y- (Biological effects of acoustic and ultrasonic energy)  
  87.50.yk (Dosimetry/exposure assessment)  
  87.55.N- (Radiation monitoring, control, and safety)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11604156 and 11474166), the Science and Technology Cooperation Projects of China and Romania (Grant No. 42-23), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161013), the Postdoctoral Science Foundation of China (Grant No. 2016M591874), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Corresponding Authors:  Dong Zhang     E-mail:  maqingyu@njnu.edu.cn

Cite this article: 

Huidan Su(宿慧丹), Gepu Guo(郭各朴), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东) Noninvasive treatment efficacy monitoring and dose control for high-intensity focused ultrasound therapy using relative electrical impedance variation 2017 Chin. Phys. B 26 054302

[1] Hutchinson L 2011 Nat. Rev. Clin. Oncol. 8 385
[2] Tu J, Hwang J H, Chen T, Fan T, Guo X, Crum L A and Zhang D 2012 Appl. Phys. Lett. 101 124102
[3] Zhang C, Teng F, Tu J and Zhang D 2014 PLOS ONE 9 e113673
[4] Gavrilov L R 2013 J. Acoust. Soc. Am. 133 4348
[5] Wu F 2013 J. Acoust. Soc. Am. 134 1695
[6] Wang X, Lin J, Liu X, Liu J and Gong X 2016 Chin. Phys. B 25 186
[7] Xing X, Lu X, Pus E C and Zhong P 2008 Biochem. Biophys. Res. Commun. 375 645
[8] Smet M D, Heijman E, Langereis S, Hijnen N M and Grüll H 2011 J. Control. Release 150 102
[9] Jeanmonod D, Werner B, Morel A, Michels L, Zadicario E, Schiff G and Martin E 2012 Neurosurgical Focus 32 107
[10] Khokhlova T D, Bailey M R, Canney M S, Khokhiova V A, Lee D and Marro K I 2009 J. Acoust. Soc. Am. 125 2420
[11] Ye G, Smith P P and Noble J A 2010 Ultrasound Med. Biol. 36 234
[12] Daniels M J, Varghese T, Madsen E Land Zagzebski J A 2007 Phys. Med. Biol. 52 4827
[13] Kaczkowski P J and Anand A 2005 J. Acoust. Soc. Am. 118 1882
[14] Parker K J and Chen S 2013 Proc. Mtgs. Acoust. 19 075102
[15] Ghoshal G, Kemmerer, J, Karunakaran C, Abuhabsah R, Miller R, Sarwate S and Oelze M 2014 Ultrason. Imaging. 36 239
[16] Gabriel C, Penman A and Grant E H 2009 Phys. Med. Biol. 54 4863
[17] Griffiths H and Ahmed A 1987 Clin. Phys. Physiol. Meas. 8 147
[18] Zurbuchen U, Holmer C, Lehmann K S, Stein T, Roggan A, Seifarth C, Buhr H J and Ritz J P 2010 Int. J. Hyperthermia 26 26
[19] Cai H, You F, Shi X, Fu F, Liu R, Tang C and Dong X 2010 Chin. Med. Equip. J. 11 8
[20] Lundin S and Stenqvist O 2012 Curr. Opin. Crit. Care 18 35
[21] Leonhardt S and Lachmann B 2012 Intensive Care Med. 38 1917
[22] Tong I O, Kim H B, Jeong W C, Sajib S Z K, Kyung E J, Kim H J, Kwon O I and Woo E J 2015 Appl. Phys. Lett. 107 023701
[23] Blackstock D T 2000 Fundamentals of Physical Acoustics (New York: John Wiley & Sons. Inc.)
[24] Cheng J C 2012 Fundamentals of Acoustics (Beijing: Science Express)
[25] Bailey M R, Khokhlova V A, Sapozhnikov O A, Kargl S G and Crum L A 2003 Acoust. Phys. 49 369
[26] Pennes H H 1948 J. Appl. Physiol. 1 93
[27] Sapareto S A and Dewey W C 1984 Int. J. Radiat. Oncol. Biol. Phys. 10 787
[28] Meaney P M, Clarke R L, ter Haar G R and Lh R 1998 Ultrasound in Med. Biol. 24 1489
[29] Takegami K and Kaneko Y 2004 Ultrasound Med. Biol. 30 1419
[30] Kreider W, Yuldashev P V, Sapozhnikov O A, Farr N, Partanen A, Bailey M R and Khokhlova V A 2013 IEEE Trans. Ultrason. Ferroelec.Freq. Contr. 60 1683
[31] Zhu X, Zhou L, Zhang D and Gong X 2005 Chin. Phys. 14 1594
[32] Yuldashev P V and Khokhlova V A 2011 Acoust. Phys. 57 334
[33] Curra F P, Mourad P D, Khokhlova V A, Cleveland R O and Crum L A 2000 IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 47 1077
[34] Soneson J E and Myers M R 2010 IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 57 2450
[35] Myers M R and Soneson J E 2009 J. Acoust. Soc. Am. 126 425
[36] Soneson J E and Myers M R 2007 J. Acoust. Soc. Am. 122 2526
[37] Zhang C, Cao H, Li Q, Tu J, Guo X, Liu Z and Zhang D 2013 Ultrasound Med. Biol. 39 161
[38] Sun T, Jia N, Zhang D and Xu D 2012 J. Acoust. Soc. Am. 131 4358
[39] Guo G, Lu L, Yin L, TuJ, Guo X,Wu J, Xu D and Zhang D 2014 Phys. Med. Biol. 59 6729
[40] Shehata I A 2012 Eur. J. Radiology 81 534
[41] Okita K, Sugiyama K, Shu T and Matsumto Y 2013 J. Acoust. Soc. Am. 134 1576
[42] Liu Z, Fan T, Guo X and Zhang D 2012 J. Acoust. Soc. Am. 131 3363
[43] Bessonova O and Wilkens V 2013 J. Acoust. Soc. Am. 134 4213
[44] Chen T, Fan T, Zhang W, Qiu Y, Tu J, Guo X and Zhang D 2014 J. Appl. Phys. 115 114902
[45] Zhang L, Wang X, Liu X and Gong X 2015 Chin. Phys. B 24 321
[46] Cheng K, Wu R, Liu X, Liu J, Gong X and Wu J 2015 Chin. Phys. B 24 267
[1] Computation and analysis of light emission in two-bubble sonoluminescence
Jin-Fu Liang(梁金福), Xue-You Wu(吴学由), Yu An(安宇), Wei-Zhong Chen(陈伟中), Jun Wang(王军). Chin. Phys. B, 2020, 29(9): 097801.
[2] Acoustic radiation force on thin elastic shells in liquid
Run-Yang Mo(莫润阳), Jing Hu(胡静), Shi Chen(陈时), Cheng-Hui Wang(王成会). Chin. Phys. B, 2020, 29(9): 094301.
[3] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2020, 29(10): 104302.
[4] Gastroscopy-conjugated photoacoustic and ultrasonic dual-mode imaging for detection of submucosal gastric cancer: in vitro study
Huaqin Wu(吴华钦), Haiyang Song(宋海洋), Yudian Huang(黄玉钿), Zhifang Li(李志芳), Shulian Wu(吴淑莲), Xiaoman Zhang(章小曼), Hui Li(李晖). Chin. Phys. B, 2020, 29(6): 064205.
[5] Bubble translation driven by pulsation in a double-bubble system
Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yuan-Yuan Zhang(张圆媛), Yao-Rong Wu(武耀蓉), Xun Wang(王寻), Guo-Ying Zhao(赵帼英). Chin. Phys. B, 2020, 29(3): 034303.
[6] Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2020, 29(3): 034304.
[7] Influence of dynamic tissue properties on temperature elevation and lesions during HIFU scanning therapy: Numerical simulation
Xiao Zou(邹孝), Hu Dong(董胡), Sheng-You Qian(钱盛友). Chin. Phys. B, 2020, 29(3): 034305.
[8] Enhancement effect of cumulative second-harmonic generation by closed propagation feature of circumferential guided waves
Guang-Jian Gao(高广健), Ming-Xi Deng(邓明晰), Ning Hu(胡宁), Yan-Xun Xiang(项延训). Chin. Phys. B, 2020, 29(2): 024301.
[9] Micro-crack detection of nonlinear Lamb wave propagation in three-dimensional plates with mixed-frequency excitation
Wei-Guang Zhu(祝伟光), Yi-Feng Li(李义丰), Li-Qiang Guan(关立强), Xi-Li Wan(万夕里), Hui-Yang Yu(余辉洋), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2020, 29(1): 014302.
[10] Theoretical estimation of sonochemical yield in bubble cluster in acoustic field
Zhuang-Zhi Shen(沈壮志). Chin. Phys. B, 2020, 29(1): 014304.
[11] Simulation of acoustic fields emitted by ultrasonic phased array in austenitic steel weld
Zhong-Cun Guo(郭忠存), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2019, 28(11): 114302.
[12] Lamb waves topological imaging combining with Green's function retrieval theory to detect near filed defects in isotropic plates
Hui Zhang(张辉), Hai-Yan Zhang(张海燕), Meng-Yun Xu(徐梦云), Guo-Peng Fan(范国鹏), Wen-Fa Zhu(朱文发), Xiao-Dong Chai(柴晓冬). Chin. Phys. B, 2019, 28(7): 074301.
[13] Response features of nonlinear circumferential guided wave on early damage in inner layer of a composite circular tube
Ming-Liang Li(李明亮), Liang-Bing Liu(刘良兵), Guang-Jian Gao(高广健), Ming-Xi Deng(邓明晰), Ning Hu(胡宁), Yan-Xun Xiang(项延训), Wu-Jun Zhu(朱武军). Chin. Phys. B, 2019, 28(4): 044301.
[14] Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials
Ying Liu(刘颖), Yi-Feng Li(李义丰), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(2): 024301.
[15] Theoretical prediction of the yield of strong oxides under acoustic cavitation
Jing Sun(孙晶), Zhuangzhi Shen(沈壮志), Runyang Mo(莫润阳). Chin. Phys. B, 2019, 28(1): 014301.
No Suggested Reading articles found!