Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054216    DOI: 10.1088/1674-1056/26/5/054216

Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers

Kundong Mo(莫坤东)1, Bo Zhai(翟波)1, Jianfeng Li(李剑峰)1, E Coscelli2, F Poli2, A Cucinotta2, S Selleri2, Chen Wei(韦晨)1, Yong Liu(刘永)1
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 Information Engineering Department, University of Parma, Parma 43124, Italy

As2S3 and As2Se3 chalcogenide 3-bridges suspended-core fibers (SCFs) are designed with shifted zero-dispersion wavelengths (ZDWs) at around 1.5 μm, 2 μm, and 2.8 μm, respectively. A generalized nonlinear Schrödinger equation is used to numerically compare supercontinuum (SC) generation in these SCFs pumped at an anomalous dispersion region nearby their ZDWs. Evolutions of the long-wavelength edge (LWE), the power proportion in the long-wavelength region (PPL), and spectral flatness (SF) are calculated and analyzed. Meanwhile, the optimal pump parameters and fiber length are given with LWE, PPL, and SF taken into account. For As2S3 SCFs, SC from a 14 mm-long fiber with a ZDW of 2825 nm pumped at 2870 nm can achieve the longest LWE of ~13 μm and PPL up to ~72%. For As2Se3 SCFs, the LWE of 15.5 μm and the highest PPL of ~87% can be achieved in a 10 mm-long fiber with ZDW of 1982 nm pumped at 2000 nm. Although the As2Se3 SCFs can achieve much longer LWE than the As2S3 SCFs, the core diameter of As2Se3 SCFs will be much smaller to obtain a similar ZDW, leading to lower damage threshold and output power. Finally, the optimal parameters for generating SC spanning over different mid-IR windows are given.

Keywords:  supercontinuum generation      suspended-core chalcogenide fiber      nonlinear optics      fiber design  
Received:  05 July 2016      Revised:  09 January 2017      Published:  05 May 2017
PACS:  42.81.-i (Fiber optics)  
  42.81.Bm (Fabrication, cladding, and splicing)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  

Project supported by the National Nature Science Foundation of China (Grant Nos. 61435003, 61377042, 61505024, and 61421002), Open Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks, China (Grant No. 2015GZKF004), Open Found of Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, China (Grant No. SKLSFO2014-07), and Open Fund of Science and Technology on Solid-State Laser Laboratory, China (Grant No. H04010501W2015000604).

Corresponding Authors:  Bo Zhai     E-mail:

Cite this article: 

Kundong Mo(莫坤东), Bo Zhai(翟波), Jianfeng Li(李剑峰), E Coscelli, F Poli, A Cucinotta, S Selleri, Chen Wei(韦晨), Yong Liu(刘永) Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers 2017 Chin. Phys. B 26 054216

[1] Bekman H H P T, Heuvel J C, Putten F J M and Schleijpen R 2004 Proc. SPIE 56 27
[2] Mukherjee A, der Porten S V and Patel C K N 2010 Appl. Opt. 49 2072
[3] Thorpe M J, Hudson D D, Moll K D, Lasri J and Ye J 2007 Opt. Lett. 32 307
[4] Paluszkiewicz C, Kwiatek W M, Banas A, Kisiel A, Marcelli A and Piccinini A 2007 Vib. Spectrosc. 43 237
[5] Alfano R R and Shapiro S L 1970 Phys. Rev. Lett. 24 584
[6] Dudley J M, Gentry G and Coen S 2006 Rev. Mod. Phys. 78 1135
[7] Izawa T, Shibata N and Takeda A 1977 Appl. Phys. Lett. 31 33
[8] Vogel EM, Weber M J and Krol D M 1991 Phys. Chem. Glasses 32 231
[9] Fujino S and Morinaga K 1997 J. Non-Cryst. Solids 222 316
[10] Savelii I, Mouawad O, Fatome J, Kibler B, Désévédavy F, Gadret G, Jules J C, Bony P Y, Kawashima H, Gao W, Kohoutek T, Suzuki T, Ohishi Y and Smektala F 2012 Opt. Express 20 27083
[11] Domachuk P, Wolchover N A, Cronin-Golomb M, Wang A, George A K, Cordeiro C M B, Knight J C and Omenetto F G 2008 Opt. Express 16 7161
[12] Liao M, Chaudhari C, Qin G, Yan X, Suzuki T and Ohishi Y 2009 Opt. Express 17 12174
[13] Qin G, Yan X, Kito C, Liao M, Suzuki T, Mori A and Ohishi Y 2010 J. Appl. Phys. 107 043108
[14] Qin G, Yan X, Liao M, Mori A, Suzuki T and Ohishi Y 2011 Laser Phys. 21 1115
[15] France P W, Carter S F, Moore M W and Day C R 1987 Brit. Telecommun. Technol. J. 5 28
[16] Hagen C L, Walewski J W and Sanders S T 2006 IEEE Photon. Technol. Lett. 18 91
[17] Xia C, Kumar M, Cheng M, Hegde RS, Islam M N, Galvanauskas A, Winful H G and Terry F L 2007 Opt. Express 15 865
[18] Qin G, Yan X, Kito C, Liao M, Chaudhari C, Suzuki T and Ohishi Y 2009 Opt. Lett. 34 2015
[19] Qin G, Yan X, Kito C, Liao M, Chaudhari C, Suzuki T and Ohishi Y 2009 App. Phys. Lett. 95 1611031
[20] Kulkarni O P, Alexander V V, Kumar M, Freeman M J, Islam M N, Terry F L, Neelakandan M and Chan A 2011 J. Opt. Soc. Am. B 28 2486
[21] Agger C, Petersen C, Dupont S, Steffensen H, Lyngso J K, Thomsen C L, Thogersen J, Keiding S R and Bang O 2012 J. Opt. Soc. Am. B 29 635
[22] Eckerle M, Kieleck C, Świderski J, Jackson S D, Mazé G and Eichhorn M 2012 Opt. Lett. 37 512
[23] Heidt A M, Price J H V, Baskiotis C, Feehan J S, Li Z, Alam S U and Richardson D J 2013 Opt. Express 21 24281
[24] Xia C, Xu Z, Islam M N, Terry F L, Freeman M J, Zakel A and Mauricio J 2009 IEEE J. Sel. Top. Quantum Electron 15 422
[25] Yang W, Zhang B, Xue G, Yin K and Hou J 2014 Opt. Lett. 39 1849
[26] Liu K, Liu J, Shi H-X, Tan F-Z, and Wang P 2014 Opt. Express 22 24384
[27] Jean-Christophe G, Vincent F, Jean-yves C, Samuel P, Marcel P, Real V and Martin B 2016 Opt. Lett. 41 1756
[28] Churbanov M F 1992 J. Non-Cryst. Solids 140 324
[29] Sanghera J S, Nguyen V Q, Pureza P C, Kung F H, Miklos R and Aggarwal I D 1994 J. Lightwave Tech. 12 737
[30] Lenz G, Zimmermann J, Katsufuji T, Lines M E, Hwang H Y, Spälter S, Slusher R E, Cheong S W, Sanghera J S and Aggarwal I D 2000 Opt. Lett. 25 254
[31] Harbold J M, Ilday F Ö and Wise F W 2002 Opt. Lett. 27 119
[32] Petersen C R, Moller U, Kubat I, Zhou B B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N and Tang Z Q 2014 Nat. Photon. 8 830
[33] Cheng T, Nagasaka K, Tuan T H, Xue X, Atsumoto M M, Tezuka H, Suzuki T and Ohishi Y 2016 Opt. Lett. 41 2117
[34] Hu J, Menyuk C R, Shaw L B, Sanghera J S and Aggarwal I D 2013 Opt. Commun. 293 116
[35] Al-Kadry A, Amraoui M El, Messaddeq Y and Rochette M 2014 Opt. Express 22 31131
[36] Cheng T, Kanou Y, Xue X, Deng D, Matsumoto M, Misumi T, Suzuki T and Ohishi Y 2014 Opt. Express 22 23019
[37] Kubat I, Petersen C R, Moller U V, Seddon A, Benson T, Brilland L, Mechin D, Moselund P M and Bang O 2014 Opt. Express 22 3959
[38] Wei C, Zhu X, Norwood R A, Song F and Peyghambarian N 2013 Opt. Express 21 29488
[39] Saini T S, Kumar A and Sinha R K 2015 J. Lightwave Tech. 33 3914
[40] Mouawad O, Picot-Clemente J, Amrani F, Strutynski C, Fatome J, Kibler B, Desevedavy F, Gadret G, Jules J C, Deng D, OhishiY and Smektala F 2014 Opt. Lett. 39 2684
[41] Moller U, Yu Y, Kubat I, Petersen C R, Gai X, Brilland L, Mechin D, Caillaud C, Troles J, Luther-Davies Band Bang O 2015 Opt. Express 23 3282
[42] Laegsgaard J 2007 Opt. Express 15 16110
[43] Kibler J M D B and Coen S 2005 Appl. Phys. B 81 337
[44] Hult J 2007 J. Lightwave Tech. 25 3770
[45] El-Amraoui M, Fatome J, Jules J C, Kibler B, Gadret G, Fortier C, Smektala F, Skripatchev I, Polacchini C F, Messaddeq Y, Troles J, Brilland L, Szpulak M and Renversez G 2010 Opt. Express 18 4547
[46] Gao W, Liao M, Yan X, Kito C, Kohoutek T, Suzuki T, El-Amraoui M, Jules J, Gadret G, Désévédavy F, Smektala F and Ohishi Y 2011 Appl. Phys. Express 4 102601
[47] Klocek P 1991 Handbook of Infrared Optical Materials (Marcel: Dekker)
[48] Poli F, Cucinotta A and Selleri S 2007 Photonic Crystal Fibers Properties and Applications (Dordrecht: Springer Series in Material Science)
[49] Coscelli E, Poli F, Li J, Cucinotta A and Selleri S 2015 IEEE Photonics Journal 7 1
[50] Shiryaev V S and Churbanow M F 2013 J. Non-Cryst. Solids 377 225
[51] Gao W, El-Amraoui M, Liao M, Kawashima H, Duan Z, Deng D, Cheng T, Suzuki T, Messaddeq Y and Ohishi Y 2013 Opt. Express 21 9573
[52] Yu Y, Gai X, Wang T, Ma P, Wang R, Yang Z, Choi D Y, Madden S and Luther-Davies B 2013 Optical Materials Express 3 1075
[53] Salem A B, Cherif R, Zghal M and Electromagnet A 2011 Raman Response of a Highly Nonlinear As2Se3-based Chalcogenide Photonic Crystal Fiber (Marrakesh: Piers 2011 Progress in Electromagnetics Research Symposium) p. 1256
[1] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[2] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[3] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[4] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[5] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[6] Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton
Song-Tao Fan(樊松涛), Yan-Yan Zhang(张颜艳), Lu-Lu Yan(闫露露), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2019, 28(6): 064204.
[7] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[8] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[9] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[10] Enhancement and control of the Goos-Hänchen shift bynonlinear surface plasmon resonance in graphene
Qi You(游琪), Leyong Jiang(蒋乐勇), Xiaoyu Dai(戴小玉), Yuanjiang Xiang(项元江). Chin. Phys. B, 2018, 27(9): 094211.
[11] Research progress of third-order optical nonlinearity of chalcogenide glasses
Xiao-Yu Zhang(张潇予), Fei-Fei Chen(陈飞飞), Xiang-Hua Zhang(章向华), Wei Ji(季伟). Chin. Phys. B, 2018, 27(8): 084208.
[12] Modulation and mechanism of ultrafast transient spectroscopy based on dimethylamino-carbaldehyde derivatives
Tong-xing Jin(金桐兴), Jun-yi Yang(杨俊义), Yu Fang(方宇), Yan-bing Han(韩艳兵), Ying-lin Song(宋瑛林). Chin. Phys. B, 2018, 27(5): 054208.
[13] Nonlinear spectral cleaning effect in cross-polarized wave generation
Linpeng Yu(於林鹏), Yi Xu(许毅), Fenxiang Wu(吴分翔), Xiaojun Yang(杨晓骏), Zongxin Zhang(张宗昕), Yuanfeng Wu(吴圆峰), Yuxin Leng(冷雨欣), Zhizhan Xu(徐至展). Chin. Phys. B, 2018, 27(5): 054214.
[14] Supercontinuum manipulation based on the influence of chirp on soliton spectral tunneling
Saili Zhao(赵赛丽), Huan Yang(杨华), Yilin Zhao(赵奕霖), Yuzhe Xiao(肖宇哲). Chin. Phys. B, 2018, 27(11): 114219.
[15] Intense supercontinuum generation in the near-ultraviolet range from a 400-nm femtosecond laser filament array in fused silica
Dongwei Li(李东伟), Lanzhi Zhang(张兰芝), Saba Zafar, He Song(宋鹤), Zuoqiang Hao(郝作强), Tingting Xi(奚婷婷), Xun Gao(高勋), Jingquan Lin(林景全). Chin. Phys. B, 2017, 26(7): 074213.
No Suggested Reading articles found!