Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 040401    DOI: 10.1088/1674-1056/26/4/040401
GENERAL Prev   Next  

Correction of cosine oscillation to the improved correlation method of estimating the amplitude of gravitational background signal

Wei-Huang Wu(巫伟皇)1, Yuan Tian(田苑)2, Chao Xue(薛超)3,4, Jie Luo(罗杰)1, Cheng-Gang Shao(邵成刚)3
1 School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China;
2 School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China;
3 MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
4 School of Physics and Astronomy, Sun Yat-sen University, Guangzhou 510275, China
Abstract  

In the measurement of G with the angular acceleration method, the improved correlation method developed by Wu et al. (Wu W H, Tian Y, Luo J, Shao C G, Xu J H and Wang D H 2016 Rev. Sci. Instrum. 87 094501) is used to accurately estimate the amplitudes of the prominent harmonic components of the gravitational background signal with time-varying frequency. Except the quadratic slow drift, the angular frequency of the gravitational background signal also includes a cosine oscillation coming from the useful angular acceleration signal, which leads to a deviation from the estimated amplitude. We calculate the correction of the cosine oscillation to the amplitude estimation. The result shows that the corrections of the cosine oscillation to the amplitudes of the fundamental frequency and second harmonic components obtained by the improved correlation method are within respective errors.

Keywords:  gravitational background signal      improved correlation method      correction      cosine oscillation  
Received:  22 November 2016      Revised:  17 January 2017      Published:  05 April 2017
PACS:  04.80.Cc (Experimental tests of gravitational theories)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11575160, 11175160, 11275075, and 11511130011).

Corresponding Authors:  Jie Luo, Cheng-Gang Shao     E-mail:  luojiethanks@126.com;cgshao@mail.hust.edu.cn

Cite this article: 

Wei-Huang Wu(巫伟皇), Yuan Tian(田苑), Chao Xue(薛超), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚) Correction of cosine oscillation to the improved correlation method of estimating the amplitude of gravitational background signal 2017 Chin. Phys. B 26 040401

[1] Rose R D, Parker H M, Lowry R A, Kuhlthau A R and Beams J W 1969 Phys. Rev. Lett. 23 655
[2] Gundlach J H, Adelberger E G, Heckel B R and Swanson H E 1996 Phys. Rev. D 54 1256
[3] Gundlach J H 1999 Meas. Sci. Technol. 10 454
[4] Gundlach J H and Merkowitz S M 2000 Phys. Rev. Lett. 85 2869
[5] Xue C, Quan L D, Yang S Q, Wang B P, Wu J F, Shao C G, Tu L C, Milyukov V and Luo J 2014 Philos. Trans. R. Soc. A 372 20140031
[6] Wang D H, Luo J and Luo K 2006 Rev. Sci. Instrum. 77 104501
[7] Bendat J S and Piersol A G 1971 Random Data: Analysis and Measurement Procedure (New York: Wiley)
[8] Billure B 2000 Meas. Sci. Technol. 11 45
[9] Tian Y L, Tu Y and Shao C G 2004 Rev. Sci. Instrum. 75 1971
[10] Luo J, Tian Y, Wang D H and Shao C G 2014 Meas. Sci. Technol. 25 055006
[11] Luo J and Hu Z K 2000 Clas. Quantum Grav. 17 2351
[12] Quan L D, Xue C, Shao C G, Yang S Q, Tu L C, Wang Y J and Luo J 2014 Rev. Sci. Instrum. 85 014501
[13] Su Y 1992 "A new test of the weak equivalence principle", Ph. D. thesis, University of Washington Washington
[14] Su Y, Heckel B R, Adelberger E G, Gundlach J H, Harris M, Smith G L and Swanson H E 1994 Phys. Rev. D 50 3614
[15] Yang S Q, Tu L C, Shao C G, Li Q, Wang Q L, Zhou Z B and Luo J 2009 Phys. Rev. D 80 122005
[16] Tu L C, Li Q, Wang Q L, Shao C G, Yang S Q, Liu L X, Liu Q and Luo J 2010 Phys. Rev. D 82 022001
[17] Luo J, Wu W H, Xue C, Shao C G, Zhan W Z, Wu J F and Milyukov V 2016 Rev. Sci. Instrum. 87 084501
[18] Wu W H, Tian Y, Luo J, Shao C G, Xu J H and Wang D H 2016 Rev. Sci. Instrum. 87 094501
[1] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[2] A novel particle tracking velocimetry method for complex granular flow field
Bi-De Wang(王必得), Jian Song(宋健), Ran Li(李然), Ren Han(韩韧), Gang Zheng(郑刚), Hui Yang(杨晖). Chin. Phys. B, 2020, 29(1): 014207.
[3] Wavefront evolution of the signal beam in Ti: sapphire chirped pulse amplifier
Zhen Guo(郭震), Lianghong Yu(於亮红), Wenqi Li(李文启), Zebiao Gan(甘泽彪), Xiaoyan Liang(梁晓燕). Chin. Phys. B, 2019, 28(1): 014203.
[4] Quantitative HRTEM and its application in the study of oxide materials
Chun-Lin Jia(贾春林), Shao-Bo Mi(米少波), Lei Jin(金磊). Chin. Phys. B, 2018, 27(5): 056803.
[5] Correction of failure in antenna array using matrix pencil technique
S U Khan, M K A Rahim. Chin. Phys. B, 2017, 26(6): 068401.
[6] High resolution inverse synthetic aperture radar imaging of three-axis-stabilized space target by exploiting orbital and sparse priors
Jun-Tao Ma(马俊涛), Mei-Guo Gao(高梅国), Bao-Feng Guo(郭宝锋), Jian Dong(董健), Di Xiong(熊娣), Qi Feng(冯祺). Chin. Phys. B, 2017, 26(10): 108401.
[7] Compton profiles of NiO and TiO2 obtained from first principles GWA spectral function
S M Khidzir, M F M Halid, W A T Wan Abdullah. Chin. Phys. B, 2016, 25(6): 067105.
[8] High-precision spectroscopy of hydrogen molecular ions
Zhong Zhen-Xiang, Tong Xin, Yan Zong-Chao, Shi Ting-Yun. Chin. Phys. B, 2015, 24(5): 053102.
[9] Scatter correction method for cone-beam CT based on interlacing-slit scan
Huang Kui-Dong, Zhang Hua, Shi Yi-Kai, Zhang Liang, Xu Zhe. Chin. Phys. B, 2014, 23(9): 098106.
[10] A generalized method of converting CT image to PET linear attenuation coefficient distribution in PET/CT imaging
Wang Lu, Wu Li-Wei, Wei Le, Gao Juan, Sun Cui-Li, Chai Pei, Li Dao-Wu. Chin. Phys. B, 2014, 23(2): 027802.
[11] Transverse Zeeman background correction method for air mercury measurement
Li Chuan-Xin, Si Fu-Qi, Liu Wen-Qing, Zhou Hai-Jin, Jiang Yu, Hu Ren-Zhi. Chin. Phys. B, 2014, 23(10): 107104.
[12] Phase transition and thermodynamic properties of ThO2:Quasi-harmonic approximation calculations and anharmonic effects
Li Qiang, Yang Jun-Sheng, Huang Duo-Hui, Cao Qi-Long, Wang Fan-Hou. Chin. Phys. B, 2014, 23(1): 017101.
[13] Multireference configuration interaction study on spectroscopic properties of low-lying electronic states of As2 molecule
Wang Jie-Min, Liu Qiang. Chin. Phys. B, 2013, 22(9): 093102.
[14] The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition
B. Malekynia, S. S. Razavipour. Chin. Phys. B, 2013, 22(5): 055202.
[15] Encoding entanglement-assisted quantum stabilizer codes
Wang Yun-Jiang,Bai Bao-Ming,Li Zhuo,Peng Jin-Ye,Xiao He-Ling. Chin. Phys. B, 2012, 21(2): 020304.
No Suggested Reading articles found!