Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 045201    DOI: 10.1088/1674-1056/26/4/045201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Variation of passivation behavior induced by sputtered energetic particles and thermal annealing for ITO/SiOx/Si system

Ming Gao(高明)1, Hui-Wei Du(杜汇伟)1, Jie Yang(杨洁)1, Lei Zhao(赵磊)1, Jing Xu(徐静)2, Zhong-Quan Ma(马忠权)1,2
1 SHU-SOEN's Research and Development Laboratory, Department of Physics, Shanghai University, Shanghai 200444, China;
2 Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444, China
Abstract  The damage on the atomic bonding and electronic state in a SiOx(1.4-2.3 nm)/c-Si(150 μm) interface has been investigated. This occurred in the process of depositing indium tin oxide (ITO) film onto the silicon substrate by magnetron sputtering. We observe that this damage is caused by energetic particles produced in the plasma (atoms, ions, and UV light). The passivation quality and the variation on interface states of the SiOx/c-Si system were mainly studied by using effective minority carrier lifetime (τeff) measurement as a potential evaluation. The results showed that the samples' τeff was reduced by more than 90% after ITO formation, declined from 107 μs to 5 μs. Following vacuum annealing at 200℃, the τeff can be restored to 30 μs. The components of Si to O bonding states at the SiOx/c-Si interface were analyzed by x-ray photoelectron spectroscopy (XPS) coupled with depth profiling. The amorphous phase of the SiOx layer and the “atomistic interleaving structure” at the SiOx/c-Si interface was observed by a transmission electron microscope (TEM). The chemical configuration of the Si-O fraction within the intermediate region is the main reason for inducing the variation of Si dangling bonds (or interface states) and effective minority carrier lifetime. After an appropriate annealing, the reduction of the Si dangling bonds between SiOx and near the c-Si surface is helpful to improve the passivation effect.
Keywords:  sputtered damage      SiOx/c-Si interface      effective minority carrier lifetime      XPS  
Received:  22 November 2016      Revised:  18 January 2017      Published:  05 April 2017
PACS:  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274067, 60876045, and 61674099) and the Research and Development Foundation of SHU-SOENs PV Joint Laboratory, China (Grant No. SS-E0700601).
Corresponding Authors:  Zhong-Quan Ma     E-mail:  zqma@shu.edu.cn

Cite this article: 

Ming Gao(高明), Hui-Wei Du(杜汇伟), Jie Yang(杨洁), Lei Zhao(赵磊), Jing Xu(徐静), Zhong-Quan Ma(马忠权) Variation of passivation behavior induced by sputtered energetic particles and thermal annealing for ITO/SiOx/Si system 2017 Chin. Phys. B 26 045201

[1] Shewchun J, Dubow J, Wilmsen C W, Singh R, Burk D and Wager J F 1979 J. Appl. Phys. 50 2832
[2] Gu J H, Si J L, Wang J X, Feng Y Y, Gao X Y and Lu J X 2015 Chin. Phys. B 24 117703
[3] Ashok S, Sharma P P and Fonash S J 1980 IEEE T. Electron Dev. 21 725
[4] Maruyama T and Fukui K 1991 J. Appl. Phys. 70 3848
[5] Chiou B S, Hsieh S T and Wu W F 1994 Appl. Surf. Sci. 74 297
[6] Demaurex B, Wolf S D, Descoeudres A, Holman Z C and Ballif C 2012 Appl. Phys. Lett. 101 171604
[7] Rossnagel S M 1989 J. Vac. Sci. Technol. A 7 1025
[8] Mattox D M 1989 J. Vac. Sci. Technol. A 7 1105
[9] Tominaga K, Chong M and Shintani Y 1994 J. Vac. Sci. Technol. A 12 1435
[10] Street R, Biegelsen D and Stuke J 1979 Philosophical Magazine Part B 40 451
[11] Lu M J, Bowden S, Das U and Birkmire R 2007 Appl. Phys. Lett. 91 063507
[12] Zhang D, Tavakoliyaraki A, Wu Y, Swaaija R A and Zemana M 2011 Energy Procedia 8 207
[13] Meng X J, Ma Z Q, Li F, Shen C, Duan Y T, Zhao L, Li Y H and Xu F 2010 Chin. Phys. Lett. 27 076101
[14] Li F, Ma Z Q, Meng X J, Lu P, Yu Z S and He B 2010 Chin. Sci. Bull. 55 1828
[15] Seah M P and Spencer S J 2003 Surf. Interface Anal. 35 515
[16] Liu E K, Zhu B S and Luo J S 2012 The Physics of Semiconductors (Xi'an: Xi'an Jiao Tong University Press) p. 222 (in Chinese)
[17] Du H W, Shen L, Ding H, Yang J, Zhao L and Ma Z Q 2012 Chin. J. Mate. Rese. 26 461 (in Chinese)
[18] Horfinyi S J, Pavelka T and Tutto P 1993 Appl. Surf. Sci. 63 306
[19] De Wolf S, Olibet S and Ballif C 2008 Appl. Phys. Lett. 93 032101
[20] De Wolf S, Ballif C and Kondo M 2012 Phys. Rev. B 85 113302
[21] Du H W, Yang J, Li Y H, Xu F, Xu J and Ma Z Q 2015 Appl. Phys. Lett. 106 093508
[22] Takagi Y, Sakashita Y, Toyoda H and Sugai H 2006 Vacuum 80 581
[23] Luo Y R 2005 Data Book of Bond Energy (Beijing: Science Press) p. 279 (in Chinese)
[24] Gruenbaum P E, King R R and Swanson R M 1989 J. Appl. Phys. 66 6110
[25] Wang Y J 2010 "Study of the solutions to the STI oxide AA damage defects", Master Dissertation (Shanghai: Shanghai Jiao Tong University) pp. 21-22 (in Chinese)
[26] Mitoma N, Aikawa S, Gao X, Kizu T, Shimizu M, Lin M F, Nabatame T and Tsukagoshi K 2014 Appl. Phys. Lett. 104 102103
[27] Ow-Yang C W, Shigesato Y and Paine D C 2000 J. Appl. Phys. 88 3717
[28] He J W, Xu X, Corneille J S and Goodman D W 1992 Surface Science 279 119
[29] Kamohara S and Kamigaki Y 1991 J. Appl. Phys. 69 7871
[30] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K and Maruyama E 2014 IEEE J. Photovoltaic 4 96
[1] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[2] Landscape of s-triazine molecule on Si(100) by a theoretical x-ray photoelectron spectroscopy and x-ray absorption near-edge structure spectra study
Jing Hu(胡静), Xiu-Neng Song(宋秀能), Sheng-Yu Wang(王胜雨), Juan Lin(林娟), Jun-Rong Zhang(张俊荣), Yong Ma(马勇). Chin. Phys. B, 2018, 27(11): 113101.
[3] Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide
Cai-Xia Hou(侯彩霞), Xin-He Zheng(郑新和), Rui Jia(贾锐), Ke Tao(陶科), San-Jie Liu(刘三姐), Shuai Jiang(姜帅), Peng-Fei Zhang(张鹏飞), Heng-Chao Sun(孙恒超), Yong-Tao Li(李永涛). Chin. Phys. B, 2017, 26(9): 098103.
[4] Angle-resolved x-ray photoelectron spectroscopy study of GeOx growth by plasma post-oxidation
Zhiqian Zhao(赵治乾), Jing Zhang(张静), Xiaolei Wang(王晓磊), Shuhua Wei(魏淑华), Chao Zhao(赵超), Wenwu Wang(王文武). Chin. Phys. B, 2017, 26(10): 108201.
[5] Structural and mechanical properties of Al-C-N films deposited at room temperature by plasma focus device
Z A Umar, R Ahmad, R S Rawat, M A Baig, J Siddiqui, T Hussain. Chin. Phys. B, 2016, 25(7): 075201.
[6] Characterization of atomic-layer MoS2 synthesized using a hot filament chemical vapor deposition method
Ying-Zi Peng(彭英姿), Yang Song(宋扬), Xiao-Qiang Xie(解晓强), Yuan Li(李源), Zheng-Hong Qian(钱正洪), Ru Bai(白茹). Chin. Phys. B, 2016, 25(5): 058104.
[7] A nano-scale mirror-like surface of Ti-6Al-4V attained by chemical mechanical polishing
Chenliang Liang(梁晨亮), Weili Liu(刘卫丽), Shasha Li(李沙沙), Hui Kong(孔慧), Zefang Zhang(张泽芳), Zhitang Song(宋志棠). Chin. Phys. B, 2016, 25(5): 058301.
[8] Modeling and experiments of N-doped vanadium oxide prepared by a reactive sputtering process
Wang Tao, Yu He, Dong Xiang, Jiang Ya-Dong, Wu Rui-Lin. Chin. Phys. B, 2015, 24(3): 038102.
[9] Photoelectric characteristics of silicon P-N junction with nanopillar texture:Analysis of X-ray photoelectron spectroscopy
Liu Jing, Wang Jia-Ou, Yi Fu-Ting, Wu Rui, Zhang Nian, Ibrahim Kurash. Chin. Phys. B, 2014, 23(9): 096101.
[10] Raman spectra and XPS studies of phase changes in Ge2Sb2Te5 films
Liu Bo, Song Zhi-Tang, Zhang Ting, Feng Song-Lin, Chen Bomy. Chin. Phys. B, 2004, 13(11): 1947-1950.
No Suggested Reading articles found!